Admittance of oled structures with YAK-203 emission layer
The current-voltage characteristics and the admittance of multilayer structures for organic LEDs based on the PEDOT:PSS/NPD/YAK-203/BCP system have been experimentally investigated in a wide range of measurement conditions. It is shown that at voltages corresponding to the effective radiative recombination of charge carriers, a significant decrease in the differential capacitance of the structures is observed. The frequency dependences of the normalized conductance of LED structures are in good agreement with the results of numerical simulation in the framework of the equivalent circuits method. Changes in the frequency dependences of the admittance with a change in temperature are most pronounced in the range of 200-300 K and less noticeable in the temperature range of 8-200 K. From the frequency dependences of the imaginary part of the impedance, carrier mobilities are found at various voltages and temperatures. The mobility values obtained by the method used are somewhat lower than the values determined by the transient electroluminescence method. The dependence of the mobility on the electric field is well approximated by a linear function; as the temperature decreases from 300 to 220 K, the mobility decreases several times.
Keywords
адмиттанс,
вольт-амперная характеристика,
светодиодная структура,
органический полупроводник,
метод эквивалентных схем,
частотная зависимость мнимой части импеданса,
подвижность носителей заряда,
переходная электролюминесценция,
organic semiconductor,
LED structure,
current-voltage characteristic,
admittance,
method of equivalent circuits,
frequency dependence of imaginary part of impedance,
charge carrier mobility,
transient electroluminescenceAuthors
Voitsekhovskii A.V. | National Research Tomsk State University; Siberian Physical-Technical Institute V.D. Kuznetsova Tomsk State University | vav43@mail.tsu.ru |
Nesmelov S.N. | National Research Tomsk State University | nesm69@mail.ru |
Dzyadukh S.M. | National Research Tomsk State University | bonespirit@mail2000.ru |
Kopylova T.N. | Siberian Physical-Technical Institute V.D. Kuznetsova Tomsk State University | kopylova@phys.tsu.ru |
Degtyarenko K.M. | Siberian Physical-Technical Institute V.D. Kuznetsova Tomsk State University | norma1954@yandex.ru |
Kokhanenko A.P. | National Research Tomsk State University | kokh@mail.tsu.ru |
Всего: 6
References
Шульга А.Ю., Зятиков И.А. // Труды Четырнадцатой Всерос. конф. студенческих научно-исследовательских инкубаторов, Томск, 17-18 мая 2017 г. - Томск, 2017. - С. 127-131.
Shinde D.B., Salunke J.K., Candeias N.R., et al. // Sci. Rep. - 2017. - V. 7. - P. 46268.
Fernandes J.M., Kiran M.R., Ulla H., et al. // Superlatt. Microstr. - 2015. - V. 83. - P. 766-775.
Tripathi D.C., Tripathi A.K., and Mohapatra Y.N. // Appl. Phys. Lett. - 2011. - V. 98. - No. 3. - P. 14.
Tanase C., Meijer E.J., Blom P.W.M., et al. // Phys. Rev. Lett. - 2003. - V. 91. - No. 21. - P. 216601.
Schmeits M. // J. Appl. Phys. - 2007. - V. 101. - No. 8. - P. 084508.
Hirwa H., Pittner S., and Wagner V. // Org. Electron. - 2015. - V. 24. - P. 303-314.
Martens H.C.F., Huiberts J.N., and Blom P.W.M. // Appl. Phys. Lett. - 2000. - V. 77. - No. 12. - P. 1852-1854.
Estrada M., Ulloa F., Ávila M., et al. // IEEE Trans. Electron Dev. - 2013. - V. 60. - No. 6. - P. 2057-2063.
Войцеховский А.В., Несмелов С.Н., Дзядух С.М. // Изв. вузов. Физика. - 2018. - Т. 61. - № 11. - С. 162-169.
Nicollian E.H. and Brews J.R. MOS (Metal Oxide Semiconductor) Physics and Technology. - New York et al.: Wiley, 1982. - 906 p.
Wang Y., Duan Q., Liang Q., et al. // Org. Electron. - 2019. - V. 66. - P. 58-62.
Li M.C., Tsai C.T., Liu Y.H., et al. // Solid-State Electron. - 2018. - V. 148. - P. 1-6.
Nguyen N.D. and Schmeits M. // Phys. Stat. Sol. (a). - 2006. - V. 203. - No. 8. - P. 1901.
Zou D., Yahiro M., and Tsutsui T. // Jpn. J. Appl. Phys. - 1998. - V. 37. - No. 11B. - P. L1406.
Xu H., Zhai W.J., Tang C., et al. // J. Phys. Chem. C. - 2016. - V. 120. - No. 31. - P. 17184-17189.
Shrotriya V. and Yang Y. // J. Appl. Phys. - 2005. - V. 97. - No. 5. - P. 054504.
Huang F., Peng Y., Xu K., et al. // J. Phys. D: Appl. Phys. - 2017. - V. 50. - No. 20. - P. 205106.
Züfle S., Altazin S., Hofmann A., et al. // J. Appl. Phys. - 2017. - V. 121. - No. 17. - P. 175501.
Tsang S.W., So S.K., and Xu J.B. // J. Appl. Phys. - 2006. - V. 99. - No. 1. - P. 013706.
Martens H.C.F., Brom H.B., and Blom P.W.M. // Phys. Rev. B. - 1999. - V. 60. - No. 12. - P. R8489.
Cobb B., Jeong Y.T., and Dodabalapur A. // Appl. Phys. Lett. - 2008. - V. 92. - No. 10. - P. 82.
Karl N. // Synth. Met. - 2003. - V. 133. - P. 649-657.
Pinner D. J., Friend R. H., and Tessler N. // J. Appl. Phys. - 1999. - V. 86. - No. 9. - P. 5116- 5130.
Романов И.В., Войцеховский А.В., Дегтяренко К.М. и др. // Изв. вузов. Физика. - 2014. - Т. 57. - № 11. - С. 116-123.
Tripathi A.K. and Mohapatra Y.N. // Org. Electron. - 2010. - V. 11. - No. 11. - P. 1753-1758.
Chen B., Lee C.S., Lee S.T., et al. // Jpn. J. Appl. Phys. - 2000. - V. 39. - Part 1. - No. 3A. - P. 1190.
Laquai F., Wegner G., and Bässler H. // Phil. Trans. Royal Soc. London A: Math., Phys. Eng. Sci. - 2007. - V. 365. - No. 1855. - P. 1473-1487.
Tiwari S. and Greenham N.C. // Opt. Quant. Electron. - 2009. - V. 41. - No. 2. - P. 69-89.
Sun S.S. and Dalton L.R. Introduction to Organic Electronic and Optoelectronic Materials and Devices. - Boca Raton: Taylor & Francis, CRC Press, 2016. - 963 p.
Stallinga P. Electrical Characterization of Organic Electronic Materials and Devices. - Chichester et al.: John Wiley & Sons, 2009. - 316 p.