Method of modeling of the optoacoustic signals in composites based on transparent matrix - metal nanoparticles
Method of modeling of the optoacoustic signals initiated by laser impulse in composites transparent matrix - metal nanoparticles taking into account the melting processes was developed and tested. Method consists in calculating the function of pressure sources depending on time and coordinate and its convolution with the Green function of the one-dimensional wave equation. Testing carried out on practically important composites pentaerythritol tetranitrate with aluminum nanoparticles of 50 nm radius. Melting is characterized by an increase in the specific volume, and leads to an increase in the amplitude of the maximum of the source function, and the appearance of a region of negative values. The dependences of the effective growth constant of the optoacoustic signal and its amplitude on the pulse energy density, which must be taken into account in this method, were calculated. The results are important for the development of methods of non-destructive testing and prediction of the functioning of photonic devices and optical detonators containing nanoparticles.
Keywords
оптоакустическая спектроскопия,
наночастицы металлов,
плавление,
лазерное излучение,
optoacoustic spectroscopy,
metal nanoparticles,
melting,
laser irradiationAuthors
Ananyeva M.V. | Kemerovo State University | kriger@kemsu.ru |
Zvekov A.A. | Federal Research Center of Coal and Coal Chemistry SB RAS, Institute of Chemistry of Coal and Material Science | zvekovaa@gmail.com |
Kalenskii A.V. | Kemerovo State University | kriger@kemsu.ru |
Aduev B.P. | Federal Research Center of Coal and Coal Chemistry SB RAS, Institute of Chemistry of Coal and Material Science | lesinko-iuxm@yandex.ru |
Всего: 4
References
Гусев В.Э., Карабутов А.А. Лазерная оптоакустика. - М.: Наука, 1991. - 304 с.
Адуев Б.П., Нурмухаметов Д.Р., Белокуров Г.М. и др. // Опт. и спектр. - 2018. - Т. 124. - № 3. - С. 404-409.
Schmid Th. // Anal. Bioanal. Chem. - 2006. - V. 384. - No. 5. - P. 1071-1086. DOI: 10.1007/s00216-005-3281-6.
Monchalin J.-P., Bertrand L., and Rousset G. // J. Appl. Phys. - 1984. - V. 56. - P. 190. https://DOI.org/10.1063/1.333751.
Xia J., Yao J., and Wang L.V. // Prog. Electromagn. Res. - 2014. - V. 147. - P. 1-22.
El-Brolossy T.A., Abdallah T., Mohamed M.B., et al. // Eur. Phys. J. Special Topics. - 2008. - V. 153. - No. 1. - P. 361-364. https://DOI.org/10.1140/epjst/e2008-00462-0.
Адуев Б.П., Нурмухаметов Д.Р., Звеков А.А., Каленский А.В. // ФГВ. - 2016. - Т. 52. - № 6. - С. 104-110.
Каленский А.В., Звеков А.А., Никитин А.П., Адуев Б.П. // Теплофизика и аэромеханика. - 2016. - Т. 23. - № 2 (98). - С. 271-279.
Knight M.W. , King N.S., Liu L., et al. // ACS Nano. - 2014. - V. 8. - No. 1. - P. 834-840.
Parashar P.K., Sharma R.P., and Komarala V.K. // J. Appl. Phys. - 2016. - V. 120. - P. 143104.
Буркина Р.С., Морозова Е.Ю., Ципилев В.П. // ФГВ. - 2011. - Т. 47. - № 5. - С. 95-105.
Адуев Б.П., Нурмухаметов Д.Р., Белокуров Г.М. и др. // ЖТФ. - 2014. - Т. 84. - Вып. 9. - С. 126-131.
Gupta S.C. The Classical Stefan Problem (Second Edition). Basic Concepts, Modelling and Analysis with Quasi-Analytical Solutions and Methods. - Elsevier, 2018. - 726 p.
Лыков А.В. Теория теплопроводности. - М.: Высшая школа, 1967. - 422 с.
Groot R.D. // J. Comput. Phys. - 2018. https://DOI.org/10.1016/j.jcp.2018.04.051.
Жвавый С.П. // ЖТФ. - 2000. - Т. 70. - Вып. 8. - С. 58-62.
Таблицы физических величин: справочник / под ред. И.К. Кикоина. - М.: Атомиздат, 1975. - 114 с.
Kirk-Othmer. Encyclopedia of Chemical Technology / ed. by Watcher. - Wiley&Sons, 1998. - V. 2. - P. 93.
Олинджер Б., Кейди Г. // Детонация и взрывчатые вещества: сб. / под ред. А.А. Борисова. - М.: Мир, 1981. - С. 203-219.