Role of the prebreakdown currents in mechanism of the static breakdown for two-sectioned thyratron with cold cathode
The data on measuring the prebreakdown currents and the static breakdown voltage in two-sectioned sealed-off thyratron with cold cathode TPI1-10k/50 are presented. The temporal behavior of the anode voltage and of the voltage at the separate sections in the prebreakdown stage and in the stage of breakdown has been investigated. It is demonstrated that availability of the prebreakdown current in the separate sections leads to redistribution of the anode voltage between the sections. This effect offers a possibility to achieve maximum breakdown voltage in the thyratron. The other method to increase the breakdown voltage is based on the forced distribution of the anode voltage over the sections by means of a capacitor divider. The features of transition from prebreakdown current to the current of breakdown are discussed for different electric circuits of thyratron operation.
Keywords
prebreakdown current,
breakdown voltage,
cold cathode thyratron,
pseudospark switch,
предпробойный ток,
пробивное напряжение,
псевдоискровой разрядник,
тиратрон с холодным катодомAuthors
Korolev Y.D. | Institute of High Current Electronics SB RAS | korolev@lnp.hcei.tsc.ru |
Landl N.V. | Institute of High Current Electronics SB RAS | landl@lnp.hcei.tsc.ru |
Geyman V.G. | Institute of High Current Electronics SB RAS | geyman@lnp.hcei.tsc.ru |
Frants O.B. | Institute of High Current Electronics SB RAS | frants@lnp.hcei.tsc.ru |
Argunov G.A. | Institute of High Current Electronics SB RAS | argunov.grigory@yandex.ru |
Bolotov A.V. | Institute of High Current Electronics SB RAS | bav@lnp.hcei.tsc.ru |
Всего: 6
References
Ryabchikov A.I., Ryabchikov I.A., Stepanov I.B., and Usov Y.P. // Surf. Coat. Tech. - 2007. - V. 201. - No. 15. - P. 6523-6525.
Frank K., Korolev Y.D., and Kuzmichev A.I. // IEEE Trans. Plasma Sci. - 2002. - V. 30. - No. 1. - P. 357-362.
Kondrat’eva N.P., Koval N.N., Korolev Y.D., and Schanin P.M. // J. Phys. D: Appl. Phys. - 1999. - V. 32. - No. 6. - P. 699-705.
Zhang J., Quan L., Gong J., et al. // IEEE Trans. Plasma Sci. - 2019. - V. 47. - No. 1. - P. 832-836.
Акишев Ю.С., Апонин Г.И., Гришин М.Е. и др. // Физика плазмы. - 2007. - Т 33. - №. 7. - С. 642-660.
Акишев Ю.С, Балакирев А.А., Каральник В.Б. и др. // Изв. вузов. Физика. - 2017. - Т. 60. - №. 8. - С. 70-74.
Akimov A.V., Akimov V.E., Bak P.A., et al. // Instrum. Exp. Tech. - 2012. - V. 55. - No. 2. - P. 218-224.
Logachev P.V., Kuznetsov G.I., Korepanov A.A., et al. // Instrum. Exp. Tech. - 2013. - V. 56. - No. 6. - P. 672-679.
Zhang J. and Liu X. // Phys. Plasmas. - 2018. - V. 25. - No. 1. - P. 013533.
Akimov A.V., Logachev P.V., Bochkov V.D., et al. // IEEE Trans. IEEE Trans. Dielectr. Electr. Insul. - 2010. - V. 17. - No. 3. - P. 716-720.
Zhang J., Li X., Liu Y., et al. // Phys. Plasmas. - 2016. - V. 23. - No. 12. - P. 123525.
Korolev Y.D., Frants O.B., Landl N.V., et al. // Phys. Plasmas. - 2017. - V. 24. - No. 10. - P. 0103526.
Korolev Y.D. // Rus. J. Gen. Chem. - 2015. - V. 85. - No. 5. - P. 1311-1325.
Korolev Y.D., Frants O.B., Landl N.V., and Suslov A.I. // IEEE Trans. Plasma Sci. - 2012. - V. 40. - No. 11. - P. 2837-2842.
Bochkov V.D., Kolesnikov A.V., Korolev Y.D., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - No. 3. - P. 341-346.
Ландль Н.В., Королев Ю.Д., Гейман В.Г., Франц О.Б. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 13-20.
Zhang J., Liu X.T., and Zhang Q.G. // Phys. Plasmas. - 2017. - V. 24. - No. 5. - P. 053515.
Bochkov V.D., Dyagilev V.M., Ushich V.G., et al. // IEEE Trans. Plasma Sci. - 2001. - V. 29. - No. 5. - P. 802-808.
Lamba R.P., Pal U.N., Meena B.L., and Prakash R. // Plasma Sources Sci. Technol. - 2018. - V. 27. - No. 3. - P. 035003.
Ландль Н.В., Королев Ю.Д., Гейман В.Г. и др. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 5-12.
Bergmann K., Vieker J., and Wezyk A. // J. Appl. Phys. - 2016. - V. 120. - No. 14. - P. 143302.
Lin M., Liao H., Liu M., et al. // J. Instrum. - 2018. - V. 13. - P. 04004.
Kozyrev A.V., Korolev Y.D., Rabotkin V.G., and Shemyakin I.A. // J. Appl. Phys. - 1993. - V. 74. - No. 9. - P. 5366-5371.
Frank K., Dewald E., Bickes C., et al. // IEEE Trans. Plasma Sci. - 1999. - V. 27. - No. 4. - P. 1008-1020.
Lamba R.P., Pathania V., Meena B.L., et al. // Rev. Sci. Instrum. - 2015. - V. 86. - No. 10. - P. 103508.
Frank R., Boggasch E., Christiansen J., et al. // IEEE Trans. Plasma Sci. - 1988. - V. 16. - No. 2 - P. 317-323.
Mehr T., Arentz H., Bickel P., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - No. 8. - P. 324-329.
Bickel P., Christiansen J., Frank K., et al. // IEEE Trans. Electron Devices. - 1991. - V. 38. - No. 4. - P. 712-716.
Frank K. and Christiansen J. // IEEE Trans. Plasma Sci. - 1989. - V. 17. - No. 5. - P. 748-753.
Zhang J. and Liu X. // Phys. Plasmas. - 2018. - V. 25. - No. 1. - P. 013533.
Zhang J. and Liu X. // IEEE Trans. Dielectr. Electr. Insul. - 2017. - V. 24. - No. 4. - P. 2050-2055.
Cao X.T., Hu J., Zhang R.X., et al. // AIP Advances. - 2017. - V. 7. - No. 11. - P. 115005.
Kumar N., Pal D.K., Jadon A.S., et al. // Rev. Sci. Instrum. - 2016. - V. 87. - No. 3. - P. 033503.
Voitenko N.V., Yudin A.S., Kuznetsova N.S., et al. // J. Phys.: Conf. Ser. - 2015. - V. 652. - P. 012059.
Yan J.Q., Shen S.K., Wang Y.A., et al. // Rev. Sci. Instrum. - 2018. - V. 89. - No. 6. - P. 065102.
Королев Ю.Д., Ландль Н.В., Гейман В.Г. и др. // Физика плазмы. - 2018. - Т. 44. - № 1. - С. 112-120.
Королев Ю.Д., Ландль Н.В., Гейман В.Г. и др. // Физика плазмы. - 2016. - Т. 42. - № 8. - С. 775-784.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Phys. Plasmas. - 2018. - V. 25. - No. 11. - P. 113510.
Korolev Y.D. and Koval N.N. // J. Phys. D: Appl. Phys. - 2018. - V. 51. - No. 32 - P. 323001.