Role of the prebreakdown currents in mechanism of the static breakdown for two-sectioned thyratron with cold cathode | Izvestiya vuzov. Fizika. 2019. № 7. DOI: 10.17223/00213411/62/7/162

Role of the prebreakdown currents in mechanism of the static breakdown for two-sectioned thyratron with cold cathode

The data on measuring the prebreakdown currents and the static breakdown voltage in two-sectioned sealed-off thyratron with cold cathode TPI1-10k/50 are presented. The temporal behavior of the anode voltage and of the voltage at the separate sections in the prebreakdown stage and in the stage of breakdown has been investigated. It is demonstrated that availability of the prebreakdown current in the separate sections leads to redistribution of the anode voltage between the sections. This effect offers a possibility to achieve maximum breakdown voltage in the thyratron. The other method to increase the breakdown voltage is based on the forced distribution of the anode voltage over the sections by means of a capacitor divider. The features of transition from prebreakdown current to the current of breakdown are discussed for different electric circuits of thyratron operation.

Download file
Counter downloads: 123

Keywords

prebreakdown current, breakdown voltage, cold cathode thyratron, pseudospark switch, предпробойный ток, пробивное напряжение, псевдоискровой разрядник, тиратрон с холодным катодом

Authors

NameOrganizationE-mail
Korolev Y.D.Institute of High Current Electronics SB RASkorolev@lnp.hcei.tsc.ru
Landl N.V.Institute of High Current Electronics SB RASlandl@lnp.hcei.tsc.ru
Geyman V.G.Institute of High Current Electronics SB RASgeyman@lnp.hcei.tsc.ru
Frants O.B.Institute of High Current Electronics SB RASfrants@lnp.hcei.tsc.ru
Argunov G.A.Institute of High Current Electronics SB RASargunov.grigory@yandex.ru
Bolotov A.V.Institute of High Current Electronics SB RASbav@lnp.hcei.tsc.ru
Всего: 6

References

Ryabchikov A.I., Ryabchikov I.A., Stepanov I.B., and Usov Y.P. // Surf. Coat. Tech. - 2007. - V. 201. - No. 15. - P. 6523-6525.
Frank K., Korolev Y.D., and Kuzmichev A.I. // IEEE Trans. Plasma Sci. - 2002. - V. 30. - No. 1. - P. 357-362.
Kondrat’eva N.P., Koval N.N., Korolev Y.D., and Schanin P.M. // J. Phys. D: Appl. Phys. - 1999. - V. 32. - No. 6. - P. 699-705.
Zhang J., Quan L., Gong J., et al. // IEEE Trans. Plasma Sci. - 2019. - V. 47. - No. 1. - P. 832-836.
Акишев Ю.С., Апонин Г.И., Гришин М.Е. и др. // Физика плазмы. - 2007. - Т 33. - №. 7. - С. 642-660.
Акишев Ю.С, Балакирев А.А., Каральник В.Б. и др. // Изв. вузов. Физика. - 2017. - Т. 60. - №. 8. - С. 70-74.
Akimov A.V., Akimov V.E., Bak P.A., et al. // Instrum. Exp. Tech. - 2012. - V. 55. - No. 2. - P. 218-224.
Logachev P.V., Kuznetsov G.I., Korepanov A.A., et al. // Instrum. Exp. Tech. - 2013. - V. 56. - No. 6. - P. 672-679.
Zhang J. and Liu X. // Phys. Plasmas. - 2018. - V. 25. - No. 1. - P. 013533.
Akimov A.V., Logachev P.V., Bochkov V.D., et al. // IEEE Trans. IEEE Trans. Dielectr. Electr. Insul. - 2010. - V. 17. - No. 3. - P. 716-720.
Zhang J., Li X., Liu Y., et al. // Phys. Plasmas. - 2016. - V. 23. - No. 12. - P. 123525.
Korolev Y.D., Frants O.B., Landl N.V., et al. // Phys. Plasmas. - 2017. - V. 24. - No. 10. - P. 0103526.
Korolev Y.D. // Rus. J. Gen. Chem. - 2015. - V. 85. - No. 5. - P. 1311-1325.
Korolev Y.D., Frants O.B., Landl N.V., and Suslov A.I. // IEEE Trans. Plasma Sci. - 2012. - V. 40. - No. 11. - P. 2837-2842.
Bochkov V.D., Kolesnikov A.V., Korolev Y.D., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - No. 3. - P. 341-346.
Ландль Н.В., Королев Ю.Д., Гейман В.Г., Франц О.Б. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 13-20.
Zhang J., Liu X.T., and Zhang Q.G. // Phys. Plasmas. - 2017. - V. 24. - No. 5. - P. 053515.
Bochkov V.D., Dyagilev V.M., Ushich V.G., et al. // IEEE Trans. Plasma Sci. - 2001. - V. 29. - No. 5. - P. 802-808.
Lamba R.P., Pal U.N., Meena B.L., and Prakash R. // Plasma Sources Sci. Technol. - 2018. - V. 27. - No. 3. - P. 035003.
Ландль Н.В., Королев Ю.Д., Гейман В.Г. и др. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 5-12.
Bergmann K., Vieker J., and Wezyk A. // J. Appl. Phys. - 2016. - V. 120. - No. 14. - P. 143302.
Lin M., Liao H., Liu M., et al. // J. Instrum. - 2018. - V. 13. - P. 04004.
Kozyrev A.V., Korolev Y.D., Rabotkin V.G., and Shemyakin I.A. // J. Appl. Phys. - 1993. - V. 74. - No. 9. - P. 5366-5371.
Frank K., Dewald E., Bickes C., et al. // IEEE Trans. Plasma Sci. - 1999. - V. 27. - No. 4. - P. 1008-1020.
Lamba R.P., Pathania V., Meena B.L., et al. // Rev. Sci. Instrum. - 2015. - V. 86. - No. 10. - P. 103508.
Frank R., Boggasch E., Christiansen J., et al. // IEEE Trans. Plasma Sci. - 1988. - V. 16. - No. 2 - P. 317-323.
Mehr T., Arentz H., Bickel P., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - No. 8. - P. 324-329.
Bickel P., Christiansen J., Frank K., et al. // IEEE Trans. Electron Devices. - 1991. - V. 38. - No. 4. - P. 712-716.
Frank K. and Christiansen J. // IEEE Trans. Plasma Sci. - 1989. - V. 17. - No. 5. - P. 748-753.
Zhang J. and Liu X. // Phys. Plasmas. - 2018. - V. 25. - No. 1. - P. 013533.
Zhang J. and Liu X. // IEEE Trans. Dielectr. Electr. Insul. - 2017. - V. 24. - No. 4. - P. 2050-2055.
Cao X.T., Hu J., Zhang R.X., et al. // AIP Advances. - 2017. - V. 7. - No. 11. - P. 115005.
Kumar N., Pal D.K., Jadon A.S., et al. // Rev. Sci. Instrum. - 2016. - V. 87. - No. 3. - P. 033503.
Voitenko N.V., Yudin A.S., Kuznetsova N.S., et al. // J. Phys.: Conf. Ser. - 2015. - V. 652. - P. 012059.
Yan J.Q., Shen S.K., Wang Y.A., et al. // Rev. Sci. Instrum. - 2018. - V. 89. - No. 6. - P. 065102.
Королев Ю.Д., Ландль Н.В., Гейман В.Г. и др. // Физика плазмы. - 2018. - Т. 44. - № 1. - С. 112-120.
Королев Ю.Д., Ландль Н.В., Гейман В.Г. и др. // Физика плазмы. - 2016. - Т. 42. - № 8. - С. 775-784.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Phys. Plasmas. - 2018. - V. 25. - No. 11. - P. 113510.
Korolev Y.D. and Koval N.N. // J. Phys. D: Appl. Phys. - 2018. - V. 51. - No. 32 - P. 323001.
 Role of the prebreakdown currents in mechanism of the static breakdown for two-sectioned thyratron with cold cathode | Izvestiya vuzov. Fizika. 2019. № 7. DOI: 10.17223/00213411/62/7/162

Role of the prebreakdown currents in mechanism of the static breakdown for two-sectioned thyratron with cold cathode | Izvestiya vuzov. Fizika. 2019. № 7. DOI: 10.17223/00213411/62/7/162

Download full-text version
Counter downloads: 397