Features of the parasitic current formation in the sealed-off cold-cathode thyratrone with the trigger unit based on auxiliary glow discharge | Izvestiya vuzov. Fizika. 2019. № 7. DOI: 10.17223/00213411/62/7/172

Features of the parasitic current formation in the sealed-off cold-cathode thyratrone with the trigger unit based on auxiliary glow discharge

The results of investigation of glow discharge with the hollow cathode and the ring anode in trigger unit of cold-cathode thyratron TPI1-10k/50 are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. Current-voltage characteristics of the discharge in trigger unit for the different tablet compositions were obtained and parasitic current to the main cathode cavity was measured. The stepwise transition to the regime with the decreased discharge burning voltage and increased parasitic current are observed. A model of the current sustainment in a hollow-cathode glow discharge is used to interpret the characteristics. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. Based on the estimations of the parameters of discharge in the trigger unit the reason of parasitic current increase is revealed.

Download file
Counter downloads: 122

Keywords

parasitic current, hollow-cathode glow discharge, cold cathode thyratron, паразитный ток, тиратрон с холодным катодом, тлеющий разряд с полым катодом

Authors

NameOrganizationE-mail
Landl N.V.Institute of High Current Electronics SB RASlandl@lnp.hcei.tsc.ru
Korolev Y.D.Institute of High Current Electronics SB RASkorolev@lnp.hcei.tsc.ru
Geyman V.G.Institute of High Current Electronics SB RASgeyman@lnp.hcei.tsc.ru
Frants O.B.Institute of High Current Electronics SB RASfrants@lnp.hcei.tsc.ru
Argunov G.A.Institute of High Current Electronics SB RASargunov.grigory@yandex.ru
Bolotov A.V.Institute of High Current Electronics SB RASbav@lnp.hcei.tsc.ru
Akimov A.V.Budker Institute of Nuclear Physics SB RASA.V.Akimov@inp.nsk.su
Bak P.A.Budker Institute of Nuclear Physics SB RASP.A.Bak@inp.nsk.su
Всего: 8

References

Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. - 2013. - V. 41. - No. 8. - P. 2087.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Plasma Phys. Rep. - 2016. - V. 42. - No. 8. - p. 799.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Plasma Phys. Rep. - 2018. - V. 44. - No. 1. - p. 110.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // IEEE Trans. Plasma Sci. - 2015. - V. 43. - No. 8. - P. 2349-2353.
Mehr T., Arentz H., Bickel P., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - P. 324-329.
Bochkov V.D., Dyagilev V.M., Ushich V.G., et al. // IEEE Trans. Plasma Sci. - 2001. - V. 29. - No. 5. - P. 802-808.
Zhang J., Li X., Liu Y., et al. // Phys. Plasmas. - 2016. - V. 23. - No. 12. - P. 123525.
Bochkov V.D., Kolesnikov A.V., Korolev Y.D., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - No. 3. - P. 341-346.
Landl N.V., Korolev Y.D., Geyman V.G., and Frants O.B. // Rus. Phys. J. - 2017. - V. 60. - No. 8. - P. 1277.
Korolev Y.D. // Rus. J. Gen. Chem. - 2015. - V. 85. - No. 5. - P. 1311-1325.
Korolev Y.D., Frants O.B., Landl N.V., and Suslov A.I. // IEEE Trans. Plasma Sci. - 2012. - V. 40. - No. 11. - P. 2837-2842.
Korolev Y.D., Frants O.B., Landl N.V., et al. // Phys. Plasmas. - 2017. - V. 24. - No. 10. - P. 0103526.
Korolev Y.D., Landl N.V., Geyman V.G., and Frants O.B. // Phys. Plasmas. - 2018. - V. 25. - No. 11. - 113510.
Kumar N., Pal D.K., Jadon A.S., et al. // Rev. Sci. Instrum. - 2016. - V. 87. - No. 3. - P. 033503.
Zhang J. and Liu X. // Phys. Plasmas. - 2018. - V. 25. - No. 1. - P. 013533.
Zhang J. and Liu X. // IEEE Trans. Dielectr. Electr. Insul. - 2017. - V. 24. - No. 4. - P. 2050-2055.
Bergmann K., Vieker J., and Wezyk A. // J. Appl. Phys. - 2016. - V. 120. - No. 14. - P. 143302.
Cao X.T., Hu J., Zhang R.X., et al. // AIP Advances. - 2017. - V. 7. - No. 11. - P. 115005.
Lin M., Liao H., Liu M., et al. // J. Instrum. - 2018. - V. 13. - P. 04004.
Frank K. and Christiansen J. // IEEE Trans. Plasma Sci. - 1989. - V. 17. - No. 5. - P. 748-753.
Kozyrev A.V., Korolev Y.D., Rabotkin V.G., and Shemyakin I.A. // J. Appl. Phys. - 1993. - V. 74. - No. 9. - P. 5366-5371.
Lamba R.P., Pathania V., Meena B.L., et al. // Rev. Sci. Instrum. - 2015. - V. 86. - P. 103508.
Yan J.Q., Shen S.K., Wang Y.A., et al. // Rev. Sci. Instrum. - 2018. - V. 89. - No. 6. - P. 065102.
Korolev Y.D. and Koval N.N. // J. Phys. D: Appl. Phys. - 2018. - V. 51. - No. 32. - P. 323001.
 Features of the parasitic current formation in the sealed-off cold-cathode thyratrone with the trigger unit based on auxiliary glow discharge | Izvestiya vuzov. Fizika. 2019. № 7. DOI: 10.17223/00213411/62/7/172

Features of the parasitic current formation in the sealed-off cold-cathode thyratrone with the trigger unit based on auxiliary glow discharge | Izvestiya vuzov. Fizika. 2019. № 7. DOI: 10.17223/00213411/62/7/172

Download full-text version
Counter downloads: 397