Electron-beam synthesis of surface alloy by irradiation of multilayer Ni-Al coating
The research study on electron-beam synthesis of nickel-aluminum surface alloy is presented. The surface alloy was formed on a steel substrate in a single vacuum cycle, by magnetron film deposition followed by one-pulse irradiation with a low-energy high-current electron beam (LEHCEB) of microsecond duration of the multilayer Ni (0.5) - Al (1.5) -Ni (0.5 µm) system. In the work, the optimal irradiation mode for the formation of surface alloy leading to the melting of all deposited films was predicted. It has been shown that in the course of one-pulse LEHCEB irradiation the surface alloy formed from deposited Ni and Al layers contains mainly the high-temperature intermetallic NiAl phase. The structure of the surface alloy is a homogeneous film of 2 μm thick and globules of size of 2 × 4 μm beneath the film, separated by a thin interlayer of the substrate material. It was established that the wear resistance of the formed Ni-Al surface alloy is 2.7 times higher compared to that for initial steel substrate.
Keywords
сплав никель - алюминий,
поверхностный сплав,
поверхностное легирование,
низкоэнергетический сильноточный электронный пучок,
износостойкость,
low-energy high-current electron beam,
surface alloy,
surface alloying,
nickel-aluminum alloy,
wear resistanceAuthors
Markov A.B. | Tomsk Scientific Center SB RAS | almar@lve.hcei.tsc.ru |
Yakovlev E.V. | Tomsk Scientific Center SB RAS | yakov_e@mail.ru |
Shepel D.A. | Tomsk Scientific Center SB RAS | dashepel@lve.hcei.tsc.ru |
Soloviev A.V. | Tomsk Scientific Center SB RAS | andrio1974@gmail.com |
Petrov V.I. | Tomsk Scientific Center SB RAS | seva-ne@mail.ru |
Всего: 5
References
Mohammad Reza Bafandeh, Ali Omidi, and Abdullah Irankhah // Surf. Coat. Technol. - 2017. - V. 315. - P. 268-273.
Sierra C. and Vazquez A.J. // Solar Energy Mater. & Solar Cells. - 2005. - V. 86. - P. 33-42.
Grzegorz Dercz, L. Pająk, and B. Formanek // J. Mater. Proc. Technol. - 2006. - V. 175(1). - P. 334-337.
Jing Wen, Hongzhi Cui, Na Wei, et al. // J. Alloys and Compounds. - 2017. - V. 695. - P. 2424- 2433.
Su F., Liu C., and Huang P. // Wear. - 2013. - V. 300. - P. 114-125.
Tjong S.C. and Chen H. // Mater. Sci. Eng. R. - 2004. - V. 45. - P. 1-88.
Choy K.L. // Prog. Mater. Sci. - 2003. - V. 48(2) - P. 57-170.
He J. and Schoenung J.M. // Mater. Sci. Eng. A. - 2002. - V. 336. - P. 274-319.
Wang H.T., Li C.J., Yang G.J., and Li C.X. // Appl. Surf. Sci. - 2008. - V. 255(5). - P. 2538- 2544.
Щукин В.Г., Марусин В.В. // Новые материалы и технологии в машиностроении. - 2013. - № 18. - С. 128-133.
Youjun Yu, Jiansong Zhou, Jianmin Chen, et al. // Wear. - 2012. - V. 274-275. - P. 298-305.
Komarov S.V., Romankov S., Hayashi N., and Kasai E. // Surf. Coat. Technol. - 2010. - V. 204. - P. 2215-2222.
Gupta G., Mondal K., and Balasubramaniam R. // J. Alloys Compd. - 2009. - V. 482. - P. 118.
Wei D., Wang X., Wang R., and Cui H. // Vacuum. - 2018. - V. 149. - P. 118-123.
Renk T.J., Buchheit R.G., Sorensen N.R., and Cowell D. // Phys. Plasmas. - 1998. - V. 5. - P. 2144.
Richter E., Piekoszewski J., Wieser E., et al. // Surf. Coat. Technol. - 2002. - V. 32. - P. 4158- 159.
Batrakov A.V., Markov A.B., Ozur G.E., et al. // Eur. Phys. J. Appl. Phys. - 2008. - V. 43. - P. 283-288.
Markov A., Yakovlev E., Shepel'D., and Bestetti M. // Results Phys. - 2019. - V. 12. - P. 1915-1924.
Марков А.Б., Миков А.В., Озур Г.Е., Падей А.Г. // ПТЭ. - 2011. - № 6. - С. 122-126.
Rotshtein V., Ivanov Yu., and Markov A. // Materials Surface Processing by Directed Energy Techniques /ed by Y. Pauleau. - Oxford: Elsevier, 2006. - Ch. 6. - P. 205-240.
Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: справочник / под ред. И.С. Григорьева, Е.З. Мейлихова. - М.: Энергоатомиздат, 1991. - 1232 с.