Current-voltage characteristics of nBn-structures based on mercury-cadmium-telluride epitaxial films
The current - voltage characteristics of nBn structures based on HgCdTe grown by molecular beam epitaxy (MBE) on GaAs substrates were experimentally investigated in the temperature range 9-300 K. The choice of technological parameters of nBn structures was determined by the possibilities of creating infrared detectors for the spectral range 3-5 μm. Structures with different compositions in the barrier layer (from 0.67 to 0.84) were studied with a thickness of this layer from 120 to 300 nm. It has been established that the composition in the barrier layer has the greatest influence on the type of current - voltage characteristics. For a composition of 0.84, with a slight reverse bias, the current density is significantly less than for structures with smaller compositions in the barrier. For structures with a pronounced dependence of the current density on temperature, the activation energies were found, which were in the range from 66 to 123 meV. Studies of nBn structures with different electrode areas showed that for large current densities an important role is played by leakage along the side walls. Possible mechanisms for the formation of current - voltage characteristics in MWIR nBn structures based on MBE HgCdTe are discussed.
Keywords
кадмий - ртуть - теллур,
HgCdTe,
nBn-структура,
молекулярно-лучевая эпитаксия,
вольт-амперная характеристика,
энергия активации,
ток поверхностной утечки,
фототок,
mercury cadmium telluride,
HgCdTe,
nBn structure,
molecular beam epitaxy,
current-voltage characteristic,
activation energy,
surface leakage current,
photocurrentAuthors
Voitsekhovskii A.V. | National Research Tomsk State University | vav43@mail.tsu.ru |
Nesmelov S.N. | National Research Tomsk State University | nesm69@mail.ru |
Dzyadukh S.M. | National Research Tomsk State University | bonespirit@mail2000.ru |
Dvoretsky S.A. | National Research Tomsk State University; Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS | dvor@isp.nsc.ru |
Mikhailov N.N. | Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS | mikhailov@isp.nsc.ru |
Sidorov G.Yu. | Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS | george@isp.nsc.ru |
Всего: 6
References
Tennant W.E. // J. Electron. Mater. - 2010. - V. 9 - No. 7. - P. 1030-1035.
Tennant W.E., Lee D., Zandian M., et al. // J. Electron. Mater. - 2008. - V. 37. - No. 9. - P. 1406- 1410.
Handbook of inf.rared detec.tion techn.ologies / eds. M. Henini and M. Razeghi. - Oxford: Elsevier Advanced Technology, 2002. - 532 p.
Istuno A.M Bandgap-engineered HgCdTe infrared detector structures for reduced cooling requirements. Ph.D. dissertation. - University of Michigan, 2012. - 175 p.
Rogalski A. // Rep. Prog. Phys. - 2005. - V. 68 - No. 10. - P. 2267.
Kopytko M., Kębłowski A., Gawron W., et al. // IEEE Trans. Electron. Dev. - 2014. - V. 61. - No. 11. - P. 3803-3807.
Zhang P., Ye Z. H., Sun C. H., et al. // J. Electron. Mater. - 2016. - V. 45. - No. 9. - P. 4716-4720.
Fu R. and Pattison J. // Opt. Eng. - 2012. - V. 51. - No. 10. - P. 104003.
Войцеховский А.В., Несмелов С.Н., Дзядух С.М. и др. // Прикладная физика. - 2018. - № 4. - С. 43-48.
Gravrand O., Boulard F., Ferron A., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 9. - P. 3069- 3075.
Kopytko M., Kębłowski A., Gawron W., et al. // Opto-Electron. Rev. - 2013. - V. 21. - No. 4. - P. 402-405.
Velicu S., Zhao J., Morley M., et al. // Proc. SPIE. - 2012. - V. 8268. - P. 826282X.
Itsuno A.M., Phillips J.D., Velicu S. // J. Electron. Mater. - 2012. - V. 41. - No. 10. - P. 2886-2892.
Akhavan N.D., Jolley G., Antoszewski J., and Faraone L. // Appl. Phys. Lett. - 2014. - V. 105. - No. 12. - P. 121110.
Akhavan N.D., Umana-Membreno G.A., Gu R., et al. // IEEE Trans. Electron. Dev. - 2018. - V. 65. - No. 2. - P. 591-598.
Itsuno A.M., Phillips J.D., Velicu S. // Appl. Phys. Lett. - 2012. - V. 100. - No. 16. - P. 161102.
Kopytko M., Wróbel J., Jóźwikowski K., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 1. - P. 158-166.
Kopytko M. and Rogalski A. // Prog. Quant. Electron. - 2016. - V. 47. - P. 1-18.
Ye Z.H., Chen Y.Y., Zhang P., et al. // Proc. SPIE. - 2014. - V. 9070. - P. 90701L.
Войцеховский А.В., Горн Д.И., Дворецкий С.А. и др. // Прикладная физика. - 2018. - № 5. - С. 50-54.
Itsuno A.M., Phillips J.D., and Velicu S. // J. Electron. Mater. - 2011. - V. 40. - No. 8. - P. 1624- 1629.
Uzgur F. and Kocaman S. // Infrared Phys. Technol. - 2019. - V. 97. - P. 123-128.
Hill C.J., Soibel A., Keo S.A., et al. // Proc. SPIE. - 2009. - V. 7298. - P. 729804.
Delli E., Letka V., Hodgson P.D., et al. // ACS Photonics. - 2019. - V. 6. - No. 2. - P. 538-544.
Martyniuk P., Kopytko M., and Rogalski A. // Opto-Electron. Rev. - 2014. - V. 22. - No. 2. - P. 127-146.
Войцеховский А.В., Горн Д.И. // Прикладная физика. - 2017. - № 4. - С. 83-86.
Kim H.S., Cellek O.O., Lin Z.Y., et al. // Appl. Phys. Lett. - 2012. - V. 101. - No. 16. - P. 161114.
Izhnin I.I., Voitsekhovsky A.V., Korotaev A.G. et al. // Infrared Phys. Technol. - 2017. - V. 81. - P. 52-58.
Maimon S. and Wicks G.W. // Appl. Phys. Lett. - 2006. - V. 89. - No. 15. - P. 151109.
Lei W., Antoszewski J., and Faraone L. // Appl. Phys. Rev. - 2015. - V. 2. - No. 4. - P. 041303.
Рогальский А. Инфракрасные детекторы: пер. с англ. под ред. А.В. Войцеховского. - Новосибирск: Наука, 2003. - 636 с.
Сhu J. and Sher A. Device Physics of Narrow Gap Semiconductors. - N. Y.: Springer, 2010. - 506 p.
Kinch M.A. State-of-the-Art Infrared Detector Technology. - Bellingham, Washngton: SPIE Press, 2014. - 262 p.