Admittance characteristics of nBn structures based on HgCdTe grown by molecular beam epitaxy | Izvestiya vuzov. Fizika. 2019. № 5. DOI: 10.17223/00213411/62/5/77

Admittance characteristics of nBn structures based on HgCdTe grown by molecular beam epitaxy

For the first time, the admittance of nBn structures based on HgCdTe grown by molecular beam epitaxy in a wide range of frequencies and temperatures was experimentally investigated. The CdTe content in the barrier layer of studied samples varied from 0.74 to 0.83, and the thickness of this layer was from 210 to 300 nm. The experimental frequency dependences of the nBn structure admittance are in good agreement with the results of the calculation using the equivalent circuit method. The proposed equivalent circuit consists of two series-connected chains, each of which contains capacitance and resistance connected in parallel. The change in the values of the elements of the equivalent circuit during heating from 9 to 300 K, as well as when the bias voltage is applied, was studied. It was shown for the first time that illumination of nBn structures based on HgCdTe radiation with a wavelength of 0.91 μm causes relaxation of the values of the equivalent circuit parameters for hundreds of minutes after the illumination is turned off. The mechanisms responsible for the elements of the equivalent circuit are discussed, as well as the features of the dependences of the admittance for different parameters of the barrier layers.

Download file
Counter downloads: 103

Keywords

low-temperature measurements, equivalent circuit, admittance, molecular beam epitaxy, unipolar barrier detectors, nBn structure, n-HgCdTe, mercury cadmium telluride, низкотемпературные измерения, эквивалентная схема, адмиттанс, молекулярно-лучевая эпитаксия, униполярные барьерные детекторы, nBn-структура, n-HgCdTe, теллурид кадмия - ртути

Authors

NameOrganizationE-mail
Voitsekhovskii A.V.National Research Tomsk State Universityvav43@mail.tsu.ru
Nesmelov S.N.National Research Tomsk State Universitynesm69@mail.ru
Dzyadukh S.M.National Research Tomsk State Universitybonespirit@mail2000.ru
Dvoretsky S.A.National Research Tomsk State University; Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASdvor@isp.nsc.ru
Mikhailov N.N.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASmikhailov@isp.nsc.ru
Sidorov G.Y.U.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASgeorge@isp.nsc.ru
Всего: 6

References

Jones B. K., Santana J., McPherson M., et al. // Sol. State Commun. - 1998. - V. 107. - No. 2. - P. 47-50.
Пеннин Н.А. // ФТП. - 1996. - Т. 30. - № 4. - С. 626-634.
Ershov M., Liu H.C., Li L., et al. // IEEE Trans. Electron. Dev. - 1998. - V. 45. - No. 10. - P. 2196- 2206.
Sze S.M. and Ng Kwok K. Physics of Semiconductor Devices, 3rd ed. - N.Y.: Wiley, 2007. - 832 p.
Nicollian E.H. and Brews J.R. MOS (metal oxide semiconductor) physics and technology. - New York et al.: Wiley, 1982. - 906 p.
Zhang P., Ye Z.H., Sun C.H., et al. // J. Electron. Mater. - 2016. - V. 45. - No. 9. - P. 4716-4720.
Fu R. and Pattison J. // Opt. Eng. - 2012. - V. 51. - No. 10. - P. 104003.
Войцеховский А.В., Несмелов С.Н., Дзядух С.М. и др. // Прикладная физика. - 2018. - № 4. - С. 43-48.
Perez J.P., Evirgen A., Abautret J., et al. // Proc. SPIE. - 2015. - V. 9370. - P. 93700N.
Klipstein P., Klin O., Grossman S., et al. // Proc. SPIE. - 2010. - V. 7608. - P. 76081V.
Rhiger D.R., Smith E.P., Kolasa B.P., et al. // J. Electron. Mater. - 2016. - V. 45. - No. 9. - P. 4646-4653.
Izhnin I.I., Nesmelov S.N., Dzyadukh S.M., et al. // Nanoscale Res. Lett. - 2016. - V. 11. - P. 53.
Li J.V. and Ferrari G. Capacitance Spectroscopy of Semiconductors. - Singapore: Pan Stanford Publishing, 2018. - 444 p.
Hirwa H., Pittner S., and Wagner V. // Org. Electron. - 2015. - V. 24. - P. 303-314.
Kopytko M., Kębłowski A., Gawron W., et al. // Opto-Electron. Rev. - 2015. - V. 23. - No. 2. - P. 143-148.
Kopytko M., Kębłowski A., Gawron W., et al. // Opto-Electron. Rev. - 2013. - V. 21. - No. 4. - P. 402-405.
Gravrand O., Boulard F., Ferron A., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 9. - P. 3069- 3075.
Velicu S., Zhao J., Morley M., et al. // Proc. SPIE. - 2012. - V. 8268. - P. 826282X.
Itsuno A. M., Phillips J. D., and Velicu S. // Appl. Phys. Lett. - 2012. - V. 100. - No. 16. - P. 161102.
Войцеховский А.В., Горн Д.И., Дворецкий С.А. и др. // Прикладная физика. - 2018. - № 5. - С. 50-54.
Kopytko M., Wróbel J., Jóźwikowski K., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 1. - P. 158-166.
Ye Z.H., Chen Y.Y., Zhang P., et al. // Proc. SPIE. - 2014. - V. 9070. - P. 90701L.
Akhavan N.D., Jolley G., Umana-Membreno G.A., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 9. - P. 3044-3055.
Uzgur F. and Kocaman S. // Infrared Phys. Technol. - 2019. - V. 97. - P. 123-128.
Piotrowski J. and Rogalski A. Hot-Operating-Temperature Infrared. - Bellingham, Washngton: SPIE Press, 2007. - 242 p.
Kinch M.A. // J. Electron. Mater. - 2015. - V. 44. - No. 9. - P. 2969-2976.
Akhavan N.D., Umana-Membreno G.A., Gu R., et al. // IEEE Trans. Electron. Dev. - 2018. - V. 65. - No. 10. - P. 4340-4345.
Voitsekhovskii A.V. and Gorn D.I. // J. Commun. Technol. Electron. - 2017. - V. 62. - No. 3. - P. 314-316.
Martyniuk P., Kopytko M., and Rogalski A. // Opto-Electron. Rev. - 2014. - V. 22. - No. 2. - P. 127-146.
Itsuno A.M., Phillips J.D., and Velicu S. // J. Electron. Mater. - 2011. - V. 40. - No. 8. - P. 1624- 1629.
Delli E., Letka V., Hodgson P.D., et al. // ACS Photonics. - 2019. - V. 6. - No. 2. - P. 538-544.
Soibel A., Keo S.A., Fisher A., et al. // Appl. Phys. Lett. - 2018. - V. 112. - No. 4. - P. 041105.
Ting D.Z., Soibel A., Khoshakhlagh A., et al. // Opt. Eng. - 2017. - V. 56. - No. 9. - P. 091606.
Reine M., Pinkie B., Schuster J., et al. // J. Electron. Mater. - 2014. - V. 43. - No. 8. - P. 2915- 2934.
Pedrazzani J.R., Maimon S., and Wicks G.W. // Electron. Lett. - 2008. - V. 44. - No. 25. - P. 1487-1488.
Maimon S. and Wicks G.W. // Appl. Phys. Lett. - 2006. - V. 89. - No. 15. - P. 151109.
Kinch M.A. State-of-the-Art Infrared Detector Technology. - Bellingham, Washngton: SPIE Press, 2014. - 262 p.
Rogalski A Infrared detectors: 2nd. ed. - New York: CRC Press, Taylor & Francis Group, 2010. - 898 p.
 Admittance characteristics of <i>nBn</i> structures based on HgCdTe grown by molecular beam epitaxy | Izvestiya vuzov. Fizika. 2019. № 5. DOI: 10.17223/00213411/62/5/77

Admittance characteristics of nBn structures based on HgCdTe grown by molecular beam epitaxy | Izvestiya vuzov. Fizika. 2019. № 5. DOI: 10.17223/00213411/62/5/77

Download full-text version
Counter downloads: 427