Structure and mechanical properties of ceramics parts obtained by additive technology | Izvestiya vuzov. Fizika. 2019. № 5. DOI: 10.17223/00213411/62/5/132

Structure and mechanical properties of ceramics parts obtained by additive technology

The results of studies of the structure, phase composition and mechanical properties of ceramic samples based on aluminum oxide, obtained using additive technology, are presented. The description of the method of obtaining samples and the specifics of the original equipment. It is shown that during the formation of the structure of ceramics with the use of additive technologies, several types of pores and surface boundaries between the layers are formed. It is established that for samples obtained with different printing strategies, different values of mechanical characteristics, caused by anisotropy of properties, are characteristic.

Download file
Counter downloads: 133

Keywords

аддитивные технологии, керамика, структура, свойства, additive technologies, ceramics, structure, properties

Authors

NameOrganizationE-mail
Promakhov V.V.National Research Tomsk State Universityvvpromakhov@mail.ru
Zhukov A.S.National Research Tomsk State Universityzhuk_77@mail.ru
Vorozhtsov A.B.National Research Tomsk State Universityabv1953@mail.ru
Scults N.A.National Research Tomsk State Universityschulznikita97@gmail.com
Kovalchuk S.V.National Research Tomsk State Universitykovalchuk.s.v@inbox.ru
Kozhevnikov S.V.Belgorod State Technological University. V.G. Shukhovkogevnikov.v.p@gmail.com
Olisov A.V.National Research Tomsk State Universitykobis@bk.ru
Klimenko V.A.National Research Tomsk State Universityfablab@siberia.design
Всего: 8

References

Wolf S., Lee T., Faierson E., et al. // J. Manufactur. Proc. - 2016. - V. 24. - P. 397-405.
Zhang P., Liu J., and To A. // Scripta Mater. - 2017. - V. 135.- P. 148-152.
Козулин А.А., Нарикович А.С., Алиев В.Д. и др. // Изв. вузов. Физика. - 2016. - Т. 59. - № 7/2.- С. 108-112.
Promakhov V. et al. // Materials. - 2018. - V. 11. - P. 2361.
Schwentenwein M., Schneider P., and Hpma J. // Adv. Sci. Technol. - 2014. - V. 88. - P. 60-64.
Zhou W., Li D., and Wang H. // Rapid Prototyping J. - 2010. - V. 16. - No. 1. - P. 29-35.
Gonzalez-Gutierrez J., Cano S., Schuschnigg S., et al. // Materials. - 2018. - V. 11. - P. 840.
Bae C. and Halloran J. // Int. J. Appl. Ceram. Technol. - 2011. - V. 8. - No. 6. - P. 1255-1262.
Baufeld B. et al. // Mater. Des. - 2010. - V. 31. - P. 106-111.
Wang T. et al. // J. Alloys Compd. - 2010. - V. 632. - P. 505-513.
Alcisto J. et al. // J. Mater. Eng. Perform. - 2011. - V. 20. - No. 2. - P. 203-212.
Thijs L. et al. // Acta Mater. - 2010. - V. 58. - No. 9. - P. 3303-3312.
Gibson I., Rosen D.W., and Strucker B. Additive Manufacturing Technologies. - N.Y.: Springer; 2010.
Promakhov V. et al. // AIP Publishing. - 2016. - V. 1772.
Promakhov V., Zhukov I., Vorozhtsov S., et al. // Refractories and Industrial Ceramics. - 2016. - V. 56. - No. 6. - P. 610-614.
Deckers J., Vleugels J., and Kruth J. // J. Ceram. Sci. Techn. - 2014. - V. 5. - P. 245-260.
 Structure and mechanical properties of ceramics parts obtained by additive technology | Izvestiya vuzov. Fizika. 2019. № 5. DOI: 10.17223/00213411/62/5/132

Structure and mechanical properties of ceramics parts obtained by additive technology | Izvestiya vuzov. Fizika. 2019. № 5. DOI: 10.17223/00213411/62/5/132

Download full-text version
Counter downloads: 427