Structural transformations in grainboundaryregion of nanocrystalline metals under mechanical loading | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/46

Structural transformations in grainboundaryregion of nanocrystalline metals under mechanical loading

Molecular dynamics simulation of structural transformations in grain boundaries of nanocrystalline metals with fcc and bcc lattices under shear loading was carried out. The subjects of the study were bicrystals of nickel and vanadium with symmetric tiled grain boundaries. The shear loading was applied as the displacement at a constant speed of the near-surface atomic layers parallel to the grain boundary plane. The shear load caused a high-speed migration of grain boundaries along the normal to their plane direction. To initiate the movement of the grain boundary the achievement of high stresses is required. Periodic boundary conditions prevented the grain rotation. The speed of the grain boundary movement was determined by the shear rate and depended on the misorientation angle of grains. It had been found that the grain boundary motion had a abrupt character and was accompanied by a rapid drop in internal stresses. Self-consistent structural transformations of atomic planes through which high-speed grain boundary motion in the metal occurred were revealed.

Download file
Counter downloads: 106

Keywords

граница зерен, наноструктурные материалы, атомные механизмы, высокоскоростное движение границ зерен, молекулярная динамика, grain boundary, nanocrystalline materials, atomic mechanisms, high speed grain boundary motion, molecular dynamics

Authors

NameOrganizationE-mail
Zolnikov K.P.Institute of Strength Physics and Materials Science of SB RASkost@ispms.ru
Kryzhevich D.S.Institute of Strength Physics and Materials Science of SB RASkryzhev@ispms.ru
Korchuganov A.V.Institute of Strength Physics and Materials Science of SB RASavkor@ispms.ru
Всего: 3

References

Kraft O., Gruber P.A., Mönig R., and Weygand D. // Annu. Rev. Mater. Res. - 2010. - V. 40. - Iss.1. - P. 293-317.
Greer J.R. and De Hosson J.T.M.// Prog. Mater. Sci. - 2011. - V. 56. - Iss. 6. - P. 654-724.
Wolf D., Yamakov V., Phillpot S., et al. // Acta Mater. - 2005. - V. 53. - Iss. 1-3. - P. 1-40.
Dao M., Lu L., Asaro R., et al. // Acta Mater. - 2007. - V. 55. - Iss. 12. - P. 4041-4065.
Ovid'ko I., Valiev R., and Zhu Y. // Prog. Mater Sci. - 2018. - V. 94. - P. 462-540.
Hahn E.N. and Meyers M.A. // Mater. Sci. Eng. - 2015. - V. A646. - P. 101-134.
Korchuganov A.V., Zolnikov K.P., and Kryzhevich D.S. // Mater. Lett. - 2019. - V. 252. - P. 194-197.
Psakhie S.G., Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Sci. Rep. - 2019. - V. 9. - Р. 3867.
Zolnikov K.P., Korchuganov A.V., Kryzhevich D.S., and Psakhie S.G. // Phys. Mesomech. - 2018. - V. 21. - P. 492-497.
Smolin I.Y., Makarov P.V., Eremin M.O., and Matyko K.S. // Procedia Struct. Integr. - 2016. - V. 2. - P. 3353-3360.
Tsukanov A.A., Shilko E.V., Gutmanas E., and Psakhie S.G. // Phys. Mesomech. - 2018. - V. 21. - P. 538-545.
Skripnyak N.V., Ponomareva A.V., Belov M.P., and Abrikosov I.A. // Mater. Design. - 2018. - V. 140. - P. 357-365.
Zepeda-Ruiz L.A., Stukowski A., Oppelstrup T., and Bulatov V.V. // Nature. - 2017. - V. 550. - Iss. 7677. - P. 492-495.
Korchuganov A.V., Tyumentsev A.N., Zolnikov K.P., et al. // J. Mater. Sci. Technol. - 2019. - V. 35. - Iss. 1. - P. 201-206.
Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Lett. Mater. - 2019. - V. 9. - Iss. 2. - P. 197-201.
Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Comput. Mater. Sci. - 2018. - V. 155. - P. 312-319.
Stukowski A. // Model. Simul. Mater. Sci. Eng. - 2010. - V. 18. - Р. 015012.
Honeycutt J.D. and Andersen H.C. // J. Phys. Chem. - 1987. - V. 91. - P. 4950-4963.
Stukowski A. and Albe K. // Model. Simul. Mater. Sci. Eng. - 2010. - V. 18. - Р. 085001.
Psakh'e S.G. and Zol'nikov K.P. // Combustion Explosion and Shock Waves. - 1998. - V. 34. - Iss. 3. - P. 366-368.
Yin J., Wang Y., Yan X., et al. // Comput. Mater. Sci. - 2018. - V. 148. - P. 141-148.
Plimpton S. // J. Comput. Phys. - 1995. - V. 117. - P. 1-19.
Foiles S.M., Baskes M.I., and Daw M.S. // Phys. Rev. B. - 1986. - V. 33. - P. 7983-7991.
Mendelev M.I., Han S., Son W-j., et al. // Phys. Rev. B. - 2007. - V. 76. - Р. 214105.
Mishin Y. and Farkas D. // Philos. Mag. A. - 1998. - V. 78. - P. 29-56.
Rupert T.J., Gianola D.S., Gan Y., and Hemker K.J. // Science. - 2009. - V. 326. - P. 1686- 1690.
Cahn J.W., Mishin Yu., and Suzuki A. // Acta Mater. - 2006. - V. 54. - P. 4953-4975.
 Structural transformations in grainboundaryregion of nanocrystalline metals under mechanical loading | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/46

Structural transformations in grainboundaryregion of nanocrystalline metals under mechanical loading | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/46