Physical regularities of influence of filler characteristics and rface surface on the formation of tribolayer friction of polymeric nanocomposite
The paper analyzes the existing patterns of influence of the characteristics of nanofiller and microgeometry of the substrate surface on the conditions for the stable tribolayer formation under friction of a polymer nanocomposite (NC). The studies were performed using the method of movable cellular automata, within which the counterbody surface profile, the adhesive properties of the matrix material and the dimensional characteristics of the nanofiller are explicitly taken into account. It is shown that in order to ensure the low friction properties of the hybrid NC, the preferred nanofiller is particles whose dimensions are comparable to the characteristic size of the substrate micro profile. The shape and size of the surface grooves of the counterbody were estimated, contributing to the conditions for the formation of a stable tribofilm of silica particles.
Keywords
компьютерное моделирование,
метод частиц,
гибридные нанокомпозиты,
частицы диоксида кремния,
размер частиц нанонаполнтеля,
микропрофиль контртела,
computer simulation,
particle method,
hybrid nanocomposites,
silicon dioxide particles,
nanofiller particle size,
counterbody microprofileAuthors
Dmitriev A.I. | Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State University | dmitr@ispms.ru |
Jim B.C. | Institute of Composite Materials Science | baicheng.jim@ivw.uni-kl.de |
Всего: 2
References
Zare Y. and Rhee K.Y. // Phys. Mesomech. - 2018. - V. 21(4). - P. 351-357.
Kozlov G.V. and Dolbin I.V. // Rus. Phys. J. - 2018. - V. 61(5). - P. 974-978.
Yao X.F., Zhou D., and Yeh H.Y. // Aerosp. Sci. Technol. - 2008. - V. 12(3). - P. 223-230.
Zhang H., Zhang Z., Friedrich K., et al. // Acta Mater. - 2006. - V. 54(7). - P. 1833-1842.
Bondioli F., Cannillo V., Fabbri E., et al. // J. Appl. Polym. Sci. - 2005. - V. 97(6). - P. 2382-2386.
Ragosta G., Abbate M., Musto P., et al. // Polymer. - 2005. - V. 46(23). - P. 10506-10516.
Zhang L., Zhang G., Chang L., et al. // Tribol. Int. - 2016. - V. 104. - P. 225-236.
Zhang L., Qi H., Li G., et al. // Tribol. Int. - 2017. - V. 109. - P. 58-68.
Österle W., Dmitriev A.I., and Gradt T. // Tribol. Int. - 2015. - V. 88. - P. 126-134.
Dmitriev A.I., Nikonov A.Yu., and Österle W. // Lubricants. - 2016. - V. 4(3). - P. 24.
Dmitriev A.I., Nikonov A.Yu., and Österle W. // Lubricants. - 2018. - V. 6(2). - P. 43.
Psakhie S.G., Smolin A.Yu., Shilko E.V., et al. // J. Mater. Sci. Technol. - 1997. - V. 13(1). - P. 69-72.
Dmitriev A.I., Österle W., and Wetzel B. // Comput. Mater. Sci. - 2015. - V. 110. - P. 204-214.
Psakhie S., Shilko S., and Smolin A. // Frattura Integr. Strutt. - 2013. - V. 24. - P. 26-59.
Dmitriev A.I., Häusler I., and Österle W. // Mater. Des. - 2016. - V. 89. - P. 950-956.
Basu S., Moseson A., and Barsoum M.W. // J. Mater. Res. - 2006. - V. 21. - P. 2628-2637.
Tinscher R., Bahnsen C., Bomas H., et al. // Materialwissenschaft und Werkstofftechnik. - 2001. - V. 32. - P. 607-620.
Goggin P.R. // J. Mater. Sci. - 1973. - V. 8. - P. 233-244.
Dmitriev A.I. and Österle W. // Tribol. Lett. - 2014. - V. 53(1). - P. 337-351.