Dependencies of the mechanical properties of ceramics with bimodal distribution of pore size on porosity at different scales | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/128

Dependencies of the mechanical properties of ceramics with bimodal distribution of pore size on porosity at different scales

The peculiarities of dependencies of elastic and strength properties of the ceramics with a hierarchically organized pore structure are revealed. To eliminate the influence of the other microstructural parameters such as grain size, for example, the study is performed based on multiscale computer simulation using movable cellular automata and probabilistic approach. A special computer model for mechanical behavior of porous ceramics with a bimodal distribution of pore size was developed. The smallest isolated pores are taken into account explicitly and a series of simulations of the representative specimens with unique pore positions in space are run at the lowest scale of the model. Values of the elastic and strength parameters of these specimens obtained from Weibull analysis are used as effective properties of the porous material matrix at the mesoscale. At the mesoscale, large pores of equiaxed and elongated shapes are taken into account explicitly. Inhomogeneity of the material at the macroscale is described implicitly by setting unique elastic and strength parameters, obtained from the Weibull analysis of the results of a series of simulations at the mesoscale, to automata.

Download file
Counter downloads: 114

Keywords

керамика, поровая структура, разрушение, многоуровневое моделирование, метод подвижных клеточных автоматов, ceramics, pore structure, fracture, multiscale simulation, Movable cellular Automaton Method

Authors

NameOrganizationE-mail
Smolin A.Yu.Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State Universityasmolin@ispms.ru
Eremina G.M.Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State Universityanikeeva@ispms.ru
Korostelev S.Yu.Institute of Strength Physics and Materials Science of SB RASsergeyk@ispms.ru
Всего: 3

References

Solid Mechanics and its Applications / eds. M. Kachanov and I. Sevostianov. V. 193. - Springer, 2013. - 389 p.
Manoylov A.V., Borodich F.M., and Evans H.P. // Proc. R. Soc. A. - 2013. - V. 469. - P. 20120689. https://doi.org/10.1098/rspa.2012.0689.
Acton K.A., Baxter S.C., Bahmani B., et al. // Comput. Methods Appl. Mech. Eng. - 2018. - V. 336. - P. 135-155. https://doi.org/10.1016/j.cma.2018.02.025 0045-7825.
Smolin I.Yu., Makarov P.V., Kulkov A.S., et al. // Phys. Mesomech. - 2018. - V. 21. - P. 297- 304. https://doi.org/10.1134/S1029959918040033.
Mikushina V.A., Smolin I.Yu., and Sidorenko Yu.N. // Inorg. Mater. Appl. Res. - 2019. - V. 10. - P. 66-69. https://doi.org/10.1134/S2075113319010222.
Psakhie S.G., Moiseyenko D.D., Smolin A.Yu., et al. // Comp. Mater. Sci. - 1999. - V. 16. - P. 333-343.
Dmitriev A.I., Smolin A.Yu., Popov V.L., and Psakhie S.G. // Phys. Mesomech. - 2009. - V. 12. - Iss. 1-2. - P. 11-19.
Smolin A.Yu., Shilko E.V., Astafurov S.V., et al. // Defence Technology. - 2018. - V. 14. - P. 643-656. https://doi.org/10.1016/j.dt.2018.09.003.
Aniszewska D. // Theor. Appl. Fract. Mech. - 2012. - V. 62. - P. 34-39. https://doi.org/10.1016/j.tafmec.2013.01.004.
Czopor J., Aniszewska D., and Rybaczuk M. // Comput. Mater. Sci. - 2012. - V. 51. - P. 151-155. https://doi.org/10.1016/j.commatsci.2011.06.042.
Smolin A.Yu., Smolin I.Yu., and Smolina I.Yu. // AIP Conf. Proc. - 2017. - V. 1893. - P. 030127-1. https://doi.org/10.1063/1.5007585.
Роман Н.В. Многоуровневое моделирование деформации и разрушения хрупких пористых материалов методом подвижных клеточных автоматов: дис.. канд. физ.-мат. наук. - Томск: Томский государственный университет, 2012. - 120 с.
Kulkov S., Buyakova S., and Gömze L. // Építőanyag-JSBCM. - 2014. - V. 66. - No. 1. - P. 1-6. https://doi.org/10.14382/epitoanyag-jsbcm.2014.1.
Kalatur E.S., Buyakova S.P., Kulkov S.N., et al. // Építőanyag-JSBCM. - 2014. - V. 66. - No. 2. - P. 31-34. https://doi.org/10.14382/epitoanyag-jsbcm.2014.6.
Zhukov I., Promakhov V., Buyakova S., and Kulkov S. // Adv. Environment. Biol. - 2014. - V. 8. - Iss. 13. - P. 447-450. http://www.aensiweb.net/AENSIWEB/aeb/aeb/August%202014/447-450.pdf.
Konovalenko Ig.S., Smolin A.Yu, and Psakhie S.G. // Frattura ed Integrità Strutturale. - 2013. - V. 24. - P. 75-80. https://doi.org/10.3221/IGF-ESIS.24.07.
Smolin A.Yu., Smolin I.Yu., and Smolina I.Yu. // Procedia Structural Integrity. - 2016. - V. 2. - P. 661-668. https://doi.org/10.1016/j.prostr.2016.06.342.
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Режим доступа https://www.R-project.org/
Project Abernethy. Implementation of functions supporting reliability analysis methods presented in "The New Weibull Handbook" by R. B. Abernethy. Режим доступа http://r-forge.r-project.org/projects/abernethy/
 Dependencies of the mechanical properties of ceramics with bimodal distribution of pore size on porosity at different scales | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/128

Dependencies of the mechanical properties of ceramics with bimodal distribution of pore size on porosity at different scales | Izvestiya vuzov. Fizika. 2019. № 8. DOI: 10.17223/00213411/62/8/128