Structural features of pseudoalloys, formed in of blasting compaction of Ni-Ag and Fe-Pb bimetallic nanoparticles
The article reviewed the nanostructured bulk alloy (pseudoalloys), obtained by the method of shock-wave exposure at Ni - Ag 9 wt. % and Fe - Pb 27 wt. % bimetallic powders. There were researched the structure and size-consist of original Ni-Ag and Fe-Pb bimetallic nanoparticles, obtained by the method of electrical explosion of wire. It conducted the analysis of structure and hardness of obtained nanostructured alloy.Presented results demonstrate the opportunity of using and effectivity of shock-wave compaction for obtaining the compacts from bimetallic powders.
Keywords
электрический взрыв проводников,
электровзрывное компактирование,
биметаллические наночастицы,
несмешивающиеся металлы,
electrical explosion of wires,
electrical explosive compaction,
bimetallic nanoparticles,
immiscible metalsAuthors
Pervikov A.V. | Institute of Strength Physics and Materials Science of SB RAS | pervikov@list.ru |
Khrustalyov A.P. | Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State University | tofik0014@mail.ru |
Bakina O.V. | Institute of Strength Physics and Materials Science of SB RAS | ovbakina@ispms.tsc.ru |
Vorozhtsov A.B. | National Research Tomsk State University | abv1953@mail.ru |
Lerner M.I. | Institute of Strength Physics and Materials Science of SB RAS | lerner@ispms.tsc.ru |
Всего: 5
References
Linse V.D. // National Materials Advisory Board, NMAB-394. - Washington: National Academy Press, 1983. - P. 1.
Pervukhin L., Alymov M., Saikov I.V., et al. // Lett. Mater. -2015. - V. 5(1). - P. 57-60.
Zhang L., Elwazri A.M., Zimmerly T., and Brochu M. // Mater. Sci. Eng. A. - 2008. - V. 487. - P. 219-227.
Lerner M.I., Pervikov A.V., Glazkova E.A., et al. // Powd. Tech. - 2016. - V. 288. - P. 371- 378.
Yi Q., Li L., Yu W., et al. // Rare Metals. - 2010. - V. 29(1). - P. 26-31.
Zhou H., Li Y., Huang J., et al. // Trans. Nonferrous Met. Soc. China. - 2015. - V. 25. - P. 4001-4007.
Boonkaew B., Kempf M., Kimble R., et al. // Burns. - 2014. - V. 40. - No. 1. - P. 89-96.
Walther A. and Müller A.H.E. // Chem. Rev. - 2013. - V. 7. - P. 5194-5261.
Friendlander S.K. and Wang C.S. // J. Colloid Interface Sci. - 1966. - V. 22. - P. 126-132.
Lerner M.I., Glazkova E.A., Lozhkomoev A.S., et al. // Powd. Tech. - 2016. - V. 295. - P. 307-314.
Wang G., Van Hove M.A., Ross P.N., and Baskes M.I. // Progress Surf. Sci. - 2005. - V. 79. - P. 28-45.
Xu Y.-H. and Wang J.-P. // Adv. Mater. - 2008. - V. 20. - P. 994-999.
Skriver H.L. and Rosengaard N.M. // Phys. Rev. B. - 1992. - V. 46. - P. 7157-7168.
Mills K.C. and Su Y.C. // Inter. Mater. Rev. - 2016. - V. 51. - P. 329-351.
Keene B.J. // Inter. Mater. Rev. - 1993. - V. 38. - P. 157-192.
Bachmaier A., Kerber M., Setman D., and Pippan R. // Acta. Mater. - 2012. - V. 60. - P. 860- 871.
Liu X.D., Hu Z.Q., and Ding B.Z. // Nanostruct. Mater. - 1993. - V. 2. - P. 545.
Sato A. and Meshi M. // Acta. Metall. - 1973. - V. 21. - P. 753.
Shen T.D. and Koch C.C. // Acta. Mater. - 1996. - V. 44. - No. 2. - P. 753-761.