Features of forming tin oxide under annealing of nanopowders obtained via pulse laser ablation of metal tin in aqueous media
Nanocolloids obtained by pulsed laser ablation (Nd: YAG laser, 1064 nm, 7 ns, 150 mJ) of metallic Sn in pure distilled water and water with additions of hydrogen peroxide and nitric acid, were dried and annealed at a temperature of up to 800 ° C. It was shown that the addition of H2O2 or HNO3 precursors affects not only the size characteristics and the structure of the initial nanoparticles, but also the formation process and the final characteristics of SnO2 during annealing. X-ray data shows that in the case of PLA in water and nitric acid solution, the SnO phase contains in the initial particles. However after annealing the sample obtained by ablation in HNO3, the intermediate orthorhombic phase SnO2 is formed. Additional studies by Raman spectroscopy and thermal analysis made it possible to determine the presence of tin hydroxide in the initial samples and the formation of intermediate forms of SnOx oxides upon annealing.
Keywords
оксид олова,
импульсная лазерная абляция,
наночастицы,
кристаллическая структура,
отжиг,
спектры комбинационного рассеяния,
tin oxide,
pulsed laser ablation,
nanoparticles,
crystal structure,
annealing,
Raman spectraAuthors
Fakhrutdinova E.D. | National Research Tomsk State University | fakhrutdinovaed@gmail.com |
Lapin I. N. | National Research Tomsk State University | 201kiop@mail.ru |
Svetlichnyi V.A. | National Research Tomsk State University | v_svetlichnyi@bk.ru |
Всего: 3
References
Batzill M. and Diebold U. // Prog. Surf. Sci. - 2005. - V. 79. - P. 47-154.
Das S. and Jayaraman V. // Prog. Surf. Sci. - 2014. - V. 66. - P. 112-255.
Marikutsa A.V., Rumyantseva M.N., Konstantinova E.A., et al.// J. Phys. Chem. C. - 2014. - V. 118. - P. 21541-21549.
Bae J., Kim J., Jeong H., and Lee H. // Catal. Sci. Technol. - 2018. - V. 8. - P. 782-789.
Goebbert C., Nonninger R., Aegerter M.A., and Schmidt H. // Thin Solid Films. - 1999. -V. 351. - P. 79-84.
Esro M., Georgakopoulos S., Lu H., et al. // Cryst. Eng. Comm. - 2017. - V. 19. - P. 4413-4420.
Comini E., Guidi V., Malagù C., et al. // J. Phys. Chem. B. - 2004. - V. 108(6). - P. 1882-1887.
Masuda Y., Ohji T., and Kato K. // ACS Appl. Mater. Interfac. - 2012. - V. 4. - P. 1666-1674.
Mohanta D. and Ahmaruzzaman M. // RSC Adv. - 2016. - V. 6. - P.110996-111015.
Chen Z., Pan D., Li Z., et al. // Chem. Rev. - 2014. - V. 114. - P. 7442-7486.
Ristoscu C., Cultrera L., Dima A., et al. // Appl. Surf. Sci. - 2005. - V. 247. - P. 95-100.
Liu Z., Zhang D., Han S., et al. // Adv. Mater. - 2003. - V. 15(20). - P. 1754-1757.
Perrone A., Zocco A., de Rosa H., et al. // Mater. Sci. Eng. C. - 2002. - V. 22. - P. 465-468.
Amendola V. and Meneghetti M. // Phys. Chem. Chem. Phys. - 2013. - V. 15. - P. 3027-3046.
Kulinich S.A., Kondo T., Shimizu Y., and Ito T. // J. Appl. Phys. - 2013. - V. 113. - P. 033509- 033514.
Sasaki T., Liang C., Nichols W.T., et al. // Appl. Phys. A. - 2004. - V. 79. - P. 1489-1492.
Pandey B.K., Shahi A.K., Shah J., et al. // Appl. Surf. Sci. - 2014. - V. 289. - P. 462-471.
Gavrilenko E.A., Goncharova D.A., Lapin I.N., et al. // Materials (MDPI). - 2019. - V. 12(1). - Art. No. 186. - P. 1-15.
Гончарова Д.А., Лапин И.Н., Савельев Е.С., Светличный В.А. // Изв. вузов. Физика. - 2017. - Т. 60. - № 7. - С. 98-106.
Светличный В.А., Лапин И.Н. // Изв. вузов. Физика. - 2015. - Т. 58. - № 11. - С. 106-112.
Svetlichnyi V.A., Shabalina A.V., Lapin I.N., et al. // Appl. Surf. Sci. - 2019. - V. 467-468. - P. 402-410.
Светличный В.А., Гончарова Д.А., Лапин И.Н., Шабалина А.В. // Изв. вузов. Физика. - 2018. - Т. 61. - № 6. - С. 42-48.
Salem E.T. // Nanosci. Nanotechnol. - 2012. - V. 2(3). - P. 86-89.
Sapkota D., Li Y., Musaev O.R., et al. // J. Laser Appl. - 2017. - V. 29. - Art. No. 012002. - P. 1-4.
Bajaj G. and Soni R.K. // Appl. Phys. A. - 2009. - V. 97. - P. 481-487.
Koizumi M., Kulinich S.A., Shimizu Y., and Ito T. // J. Appl. Phys. - 2013. - V. 114. - P. 214301-214306.
Mintcheva N., Aljulaih A.A., Bito S., et al. // J. Alloy Compd. - 2018. - V. 747. - P. 166-175.
Svetlichnyi V.A., Shabalina A.V., Lapin I.N., et al. // Appl. Surf. Sci. - 2018. - V. 462. - P. 226-236.
Svetlichnyi V.A., Shabalina A.V., Lapin I.N., et al. // Appl. Phys. A. - 2017. - V. 123. - No. 12. - Art. No. 763. - P. 1-8.
Camacho-López M. A., Galeana-Camacho J.R., Esparza-García A., et al. // Superficies y Vacío. - 2013. - V. 26(3). - P. 95-99.
Sangaletti L., Depero L.E., Allieri B., et al. // J. Mater. Res. - 1998. - V. 13. - No. 9. - P. 2457- 2460.
Geurts J., Rau S., Richter W., and Schmitte F.J. // Thin Solid Films. - 1984. - V. 121(3). - P. 217-225.
Eifert B., Becker M., Reindl C.T., et al. // Phys. Rev. Mater. - 2017. - V. 1. - P. 014602-014608.
Aragon F.H., Coaquira J.A.H., Hidalgo P., et al. // J. Raman Spectrosc. - 2011. - V. 42. - P. 1081-1086.
Sergent N., Epifani M., and Pagnier T. // J. Raman Spectrosc. - 2006. - V. 37. - P. 1272-1277.
Dieguez A., Romano-Rodrıguez A., Vila A., and Morante J.R. // J. Appl. Phys. - 2001. - V. 90. - No. 3. - P. 1550-1557.
Jang D.M., Jung H., Hoa N.D., et al. // J. Nanosci. Nanotechnol. - 2012. - V. 12. - P. 1425-1428.