Biodegradable current-conductive polycaprolactone-based composites filled with carbon nanotubes | Izvestiya vuzov. Fizika. 2019. № 10. DOI: 10.17223/00213411/62/10/3

Biodegradable current-conductive polycaprolactone-based composites filled with carbon nanotubes

Novel polymer polycaprolactone-based composites filled with carbon nanotubes were fabricated. All composites were fabricated by melt compounding. In has been found that the crystallinity degree is increased by more than 60% compared with the neat polycaprolactone. Adding carbon nanotubes into polymer matrix results in the decrease of the mean size of spherulites whilst the number of spherulites is increased. It has been shown that developed composites can be processed by extrusion as the melt flow index is not less than 0.5 g/10min at the carbon nanotube content 1.0 wt%.

Download file
Counter downloads: 137

Keywords

поли(e-капролактон), биоразлагаемые электропроводящие композиции поли(e-капролактон)/ углеродные нанотрубки, степень кристалличности, poly(e-caprolactone), biodegradable current-conductive poly(e-caprolactone)/carbon nanotube composites, crystallinity degree

Authors

NameOrganizationE-mail
Lebedev S.M.National Research Tomsk Polytechnic Universitylsm70@mail.ru
Amitov E.T.National Research Tomsk Polytechnic Universityernar_amitov.91@mail.ru
Mikutskiy E.A.National Research Tomsk Polytechnic Universitymikuta1994@mail.ru
Всего: 3

References

Mitchell C.A. and Krishnamoorti R. // Macromolecules. - 2007. - V. 40. - P. 1538-1545, https://doi.org/ 10.1021/ma0616054.
Pan L., Pei X., He R., et al. // Colloids and Surfaces B: Biointerfaces. - 2012. - V. 93. - P. 226-234, https://doi.org/10.1016/j.colsurfb.2012.01.011.
Gonçalves E.M., Oliveira F.J., Silva R.F., et al. // J. Biomed. Mater. Res. Part: B. - 2015. - V. 104B. - P. 1210-1219, https://doi.org/10.1002/jbm.b.33432.
Ho C.M.B., Mishra A., Lin P.T.P., et al. // Macromol. Biosci. - 2016, https://doi.org/10.1002/ mabi.201600250.
Luo F., Pan L., Pei X., et al. // Handbook of Polymer Nanocomposites. Processing, Performance and Application. V. B: Carbon Nanotube Based Polymer Composites / eds. K.K. Kar et al. - Berlin; Heidelberg: Springer Verlag, 2015. - P. 173-193, https://doi.org/10.1007/978-3-642-45229-1_41.
Langer R. and Vacanti J.P. // Science. - 1993. - V. 260. - P. 920-926, https://doi.org/10.1126/science.8493529.
Crump S.S. // Proc. ASME annual winter conference, December, 1991, Atlanta, USA. - 1991. - V. 50. - P. 53- 60.
Huang S.H., Liu P., Mokasdar A., and Hou L. // Int. Adv. Manufact. Technol. - 2013. - V. 67. - P. 1191-1203, https://doi.org/ 10.1007/s00170-012-4558-5.
Hutmacher D.W. // Biomaterials. - 2000. - V. 21. - P. 2529-2543.
Hutmacher D.W., Schantz T., and Zein I. // J. Biomed. Mater. Res. - 2001. - V. 55. - P. 203-216.
Rohner D., Hutmacher D.W., Cheng T.K., et al. // J. Biomed. Mater. Res. B: Appl. Biomater. - 2003. - V. 66B. - P. 574-580, https://doi.org/10.1002/jbm.b.10037.
Sitharaman B., Shi X., Walboomers X.F., et al. // Bone. - 2008. - V. 43. - P. 362-370, https://doi.org/10.1016/ j.bone.2008.04.013.
Supronowicz P.R., Ajayan P.M., Ullmann K.R., et al. // J. Biomed. Mater. Res. - 2002. - V. 59. - P. 499-506, https://doi.org/10.1002/jbm.10015.
Bassett C.A. and Becker R.O. // Science. - 1962. - V. 137. - P. 1063-1064.
Bassett C.A., Pawluk R.J., and Becker R.O. // Nature. - 1964. - V. 204. - P. 652-654.
Coleman M.M. and Zarian J. // J. Polym. Sci. Part B: Polym. Phys. - 1979. - V. 17. - P. 837-850.
Elzubair A., Elias C.N., Suarez J.C.M., et al. // J. Dent. - 2006. - V. 34. - P. 784-789, https://doi.org/10.1016/j.dent.2006.03.002.
Li R., Nie K., Shen X., and Wang S. // Mater. Lett. - 2007. - V. 61. - P. 1368-1371, https://doi.org/10/1016/ j.matlet.2006.07.032.
Navarro-Baena I., Marcos-Fernandez A., Kenny J.M., and Peponi L. // J. Appl. Cryst. - 2014. - V. 47. - P. 1948-1957, https://doi.org/ 10.1107/S1600576714022468.
Chen E.C. and Wu T.M. // Polym. Degrad. Stab. - 2007. - V. 92. - P. 1009-1015, https://doi.org/ 10.1016/j.polymdegradstab.2007.02.019.
Lebedev S.M., Gefle O.S., and Tkachenko S.N. // J. Electrostat. - 2010. - V. 68. - P. 122-127, https://doi.org/10.1016/ j.elstat.2009.11.007.
Lebedev S.M., Gefle O.S., and Semenikhin M.V. // J. Korean Powder Metal. Inst. - 2011. - V. 18. - P. 181- 187, https://doi.org/10.4150/kpmi.2011.18.2.181.
Olmo C., Amestoy H., Casas M.T., et al. // Polymers. - 2017. - V. 9. - P. 322-339, https://doi.org/10.3390/polym9080322.
Gumede T.P., Luyt A.S., and Müller A.J. // Express Polym. Lett. - 2018. - V. 12. - P. 505-529, https://doi.org/10.3144/ expresspolymlett.2018.43.
 Biodegradable current-conductive polycaprolactone-based composites filled with carbon nanotubes | Izvestiya vuzov. Fizika. 2019. № 10. DOI: 10.17223/00213411/62/10/3

Biodegradable current-conductive polycaprolactone-based composites filled with carbon nanotubes | Izvestiya vuzov. Fizika. 2019. № 10. DOI: 10.17223/00213411/62/10/3