Regimes of sustaining the hollow-cathode glow discharge with the hot filament inside the cavity
The results of investigation of low-pressure glow discharge with the hollow cathode and hot filament (thermionic cathode) inside the cavity are presented. Current-voltage characteristics of the discharge and the values of currents to the thermionic cathode and to the hollow cathode depending on the discharge burning voltage at different gas pressures and different heating currents of thermionic cathode were obtained. It is shown that the main part of discharge current is carried in the circuit of thermionic cathode. Model of the current sustainment in a hollow-cathode glow discharge was used to interpret the current-voltage characteristics. Instead of the conventional secondaryemission coefficient, the model uses a generalized emission coefficient that takes into account not only ion bombardmentof the cathode, but also the emission current from an external source. The estimations of the discharge parameters were done. Model agrees well with the experimental data.
Keywords
тлеющий разряд,
полый катод,
нить накала,
термокатод,
glow discharge,
hollow cathode,
hot filament,
thermionic cathodeAuthors
Landl N.V. | Institute of High Current Electronics SB RAS | landl@lnp.hcei.tsc.ru |
Korolev Y.D. | Institute of High Current Electronics SB RAS | korolev@lnp.hcei.tsc.ru |
Geyman V.G. | Institute of High Current Electronics SB RAS | geyman@lnp.hcei.tsc.ru |
Frants O.B. | Institute of High Current Electronics SB RAS | frants@lnp.hcei.tsc.ru |
Shemyalin I.A. | Institute of High Current Electronics SB RAS | shemyakin@lnp.hcei.tsc.ru |
Kasyanov V.S. | Institute of High Current Electronics SB RAS | kasianov_vs@bk.ru |
Lopatin I.V. | Institute of High Current Electronics SB RAS | lopatin@opee.hcei.tsc.ru |
Kovalsky S.S. | Institute of High Current Electronics SB RAS | skov@sibmail.com |
Всего: 8
References
Akishev Y.S., Karal’nik V.B., Petryakov A.V., et al. // Plasma Phys. Rep. - 2016. - V. 42. -No. 1. - P. 14.
Gavrilov N.V. and Kamenetskikh A.S. // Rev. Sci. Instrum. - 2004. - V. 75. - P. 1875.
Dewald E., Frank K., Hoffman D.H.H., et al. // IEEE Trans. Plasma Sci. - 1997. - V. 25. - P. 272.
Yushkov G.Y. // Rev. Sci. Instrum. - 2004. - V. 75. - P. 1582.
Bergmann K., Vieker J., and Wezyk A. // J. Appl. Phys. - 2016. - V. 120. - No. 14. - P. 143302.
Borisov V.M., Eltsov A.V., Ivanov A.S., et al. // J. Phys. D: Appl. Phys. - 2004. - V. 37. - P. 3254.
Rosier O., Apetz R., Bergmann K., et al. // IEEE Trans. Plasma Sci. - 2004. - V. 32. - P. 240.
Korolev Y.D. and Koval N.N. // J. Phys. D: Appl. Phys. - 2018. - V. 51. - No. 32. - P. 323001.
Lamba R.P., Pathania V., Meena B.L., et al. // Rev. Sci. Instrum. - 2015. - V. 86. - No. 10. - P. 103508.
Yan J.Q., Shen S.K., Wang Y.A., et al. // Rev. Sci. Instrum. - 2018. - V. 89. - No. 6. - P. 065102.
Frank K. and Christiansen J. // IEEE Trans. Plasma Sci. - 1989. - V. 17. - No. 5. - P. 748-753.
Korolev Y.D. and Frank K. // IEEE Trans. Plasma Sci. - 1999. - V. 27. - P. 1525.
Lin M., Liao H., Liu M., et al. // J. Instrum. - 2018. - V. 13. - P. 04004.
Kumar N., Pal D.K., Jadon A.S., et al. // Rev. Sci. Instrum. - 2016. - V. 87. - No. 3. - P. 033503.
Zhang J. and Liu X. // IEEE Trans. Dielectr. Electr. Insul. - 2017. - V. 24. - No. 4. - P. 2050-2055.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Phys. Plasmas. - 2018. - V. 25. - No. 11. - P. 113510.
Ландль Н.В., Королев Ю.Д., Гейман В.Г., Франц О.Б. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 13-20.
Ландль Н.В., Королев Ю.Д., Гейман В.Г. и др. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 5-12.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // IEEE Trans. Plasma Sci. - 2015. - V. 43. - No. 8. - P. 2349-2353.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Plasma Phys. Rep. - 2018. - V. 44. - No. 1. - P. 110-117.
Kondrat’eva N.P., Koval N.N., Korolev Y.D., and Schanin P.M. // J. Phys. D: Appl. Phys. - 1999. - V. 32. - P. 699.
Воробьёв М.С., Девятков В.Н., Коваль Н.Н., Сулакшин С.А. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 109-114.
Denisov V.V., Akhmadeev Y.H., Lopatin I.V., et al. // Book Series: IOP Conf. Series. - Materials Science and Engineering. - 2015. - V. 81. - P. 012067.
Lopatin I.V., Akhmadeev Y.H., and Koval N.N. // Rev. Sci. Instrum. - 2015. - V. 86. - P. 103301.
Koval N.N., Ivanov Y.F., Lopatin I.V., et al. // Russ. J. General Chem. - 2015. - V. 85. - P. 1326.
Koval N.N., Ryabchikov A.I., Sivin D.O., et al. // Surf. Coat. Technol. - 2018. - V. 340. - P. 152.
Akhmadeev Y.H., Denisov V.V., Koval N.N., et al. // Plasma Phys. Rep. - 2017. - V. 43. - No. 1. - P. 67.
Девятков В.Н., Коваль Н.Н. // Изв. вузов. Физика. - 2017. - Т. 60. - № 9. - С. 44-48.
Kozyrev A.V., Korolev Y.D., Rabotkin V.G., and Shemyakin I.A. // J. Appl. Phys. - 1993. - V. 74. - No. 9. - P. 5366-5371.
Ul’yanov K.N. // High Temp. - 1999. - V. 37. - P. 337.
Pitchford L.C., Ouadoudi N., Boeuf J.P., et al. // J. Appl. Phys. - 1995. - V. 78. - P. 77.
Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. - 2013. - V. 41. - No. 8. - P. 2087.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Plasma Phys. Rep. - 2016. - V. 42. - No. 8. - P. 799-807.