Plasmachemical decomposition of hydrocarbons on the basis of a micro-arch discharge with rotating disk electrodes
An innovative plasma-chemical hydrocarbon processing reactor was developed in the work. It is based on the interaction of a nonequilibrium gas-discharge plasma with hydrocarbons in the bulk of the raw material. The results of the experiments showed that nonequilibrium gas-discharge plasma of a microarc discharge, initiated in the bulk of hydrocarbon raw materials, is a unique tool for processing the latter. It was shown that this method allows not only decomposing hydrocarbons into light fractions, but also simultaneously obtaining fullerenes and nanotubes.
Keywords
плазмохимический синтез,
разряд в жидкости,
микродуговой разряд,
углеводороды,
наноструктуры,
cold cathode thyratron,
pseudospark switch,
prebreakdown current,
breakdown voltageAuthors
Saifutdinova A.A. | Kazan National Research Technical University named after A.N. Tupolev - KAI | aliya_2007@list.ru |
Sofronitskiy A.O. | Kazan National Research Technical University named after A.N. Tupolev - KAI | artempic8@mail.ru |
Timerkaev B.A. | Kazan National Research Technical University named after A.N. Tupolev - KAI | btimerkaev@gmail.com |
Saifutdinov A.I. | Kazan National Research Technical University named after A.N. Tupolev - KAI | as.uav@bk.ru |
Всего: 4
References
Ganieva G.R., Ziganshin D.I., Aukhadeev M.M., and Timerkaev B.A. // J. Eng. Phys. Thermophys. - 2014. - V. 87. - No. 9. - P. 699-703.
Timerkaev B.A. and Ganieva G.R. // J. Phys.: Conf. Series: Mater. Sci. Eng. - 2015. - No. 012009. - P. 1-4.
Timerkaev B.A., Sofronitskiy A.O., and Andreeva A.A. // J. Phys.: Conf. Series. - 2016. - V. 669. - No. 012062. - P. 1-4.
Timerkaev B.A. and Ganieva G.R. // J. Phys.: Conf. Series. - 2016. - V. 669. - No. 012062. - P. 1-5.
Ganieva G.R. and Timerkaev B.A. // Petroleum Chemistry. - 2016. - V. 56. - No. 9. - P. 869-872.
Nomura S. and Toyota H. // Appl. Phys. Lett. - 2003. - V. 83. - P. 4503.
Nomura S., Toyota H., Tawara M., and Yamashota H. // Appl. Phys. Lett. - 2006. - V. 88. - No. 231502.
Nomura S., Toyota H., Mukasa S., et al. // J. Appl. Phys. - 2009. - V. 106. - No. 073306.
Ishijima T., Sugiura H., Satio R., et al. // Plasma Sources Sci. Technol. - 2010. - V. 19. - No. 015010.
Ishijima T., Hotta H., and Sugai H. // Appl. Phys. Lett. - 2007. - V. 91. - No. 121501.
Lebedev Yu.A., Tatarinov A.V., Epstein I.L., and Averin K.A. // Plasma Chem. Plasma Process. - 2016. - V. 36. - P. 535-552.
Averin K.A., Lebedev Yu.A., Shchegolikhin A.N., and Yablokov M.Yu. // Plasma Processes and Polymers. - 2017. - V. 14. - No. e201600227. - P. 1-9.
Lebedev Yu.A., Averin K.A., Borisov R.S., et al. // High Energy Chem. - 2018. - V. 52. - No. 4. - P. 324-329.
Lebedev Yu.A. and Averin K.A. // J. Phys. D: Appl. Phys. - 2018. - V. 51. - No. 214005. - P. 1-5.