Influence of defect structure on oxidation rate of V-Cr-W-Zr alloy during heat treatment on air
The results of investigation of microstructure influence on oxidation rate of V-Cr-W-Zr-system alloy under conditions of heat treatment in air are presented. It is shown that the formation of a defect state in the alloy increases oxidation constant and rate. The maximum effects of microstructure influence on oxidation processes are observed at a short processing time.
Download file
Counter downloads: 87
Keywords
сплавы ванадия, термомеханическая и химико-термическая обработка, зеренная и дефектная структура, скорость окисления, vanadium alloys, thermomechanical and chemical-heat treatments, grain and defect structure, oxidation rateAuthors
Name | Organization | |
Smirnov I.V. | Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk State University; V.D. Kuznetsov Siberian Physical-Technical Institute | smirnov_iv@bk.ru |
Grinyaev K.V. | Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk State University; V.D. Kuznetsov Siberian Physical-Technical Institute | kvgrinyaev@inbox.ru |
Ditenberg I.A. | Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk State University | ditenberg_i@mail.ru |
Tyumentsev A.N. | Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk State University | tyuments@phys.tsu.ru |
Chernov V.M. | A.A. Bochvar High-Technology Research Institute of Inorganic Materials | chernovv@bochvar.ru |
References
Chen J.M., Chernov V.M., Kurtz R.J., and Muroga T. // J. Nucl. Mater. - 2011. - V. 417. - P. 289-294.
Muroga T., Chen J.M., Chernov V.M., et al. // J. Nucl. Mater. - 2014. - V. 455. - P. 263-268.
Kurishita H., Oda S., Kobayashi S., et al. // J. Nucl. Mater. - 2007 - V. 367. - P. 848-852.
Chen J., Muroga T., Nagasaka T., et al. // J. Nucl. Mater. - 2003 - V. 322(1). - P. 73-79.
Potapenko M.M., Chernov V.M., Drobyshev V.A., et al. // Phys. Atomic Nuclei. - 2015. - V. 78. - No. 10. - P. 1087-1091.
Tyumentsev A.N., Ditenberg I.A., Grinyaev K.V., et al. // Phys. Atomic Nuclei. - 2015. - V. 78. - No. 10. - P. 1092-1099.
Chernov V.M., Potapenko M.M., Drobyshev V.A., et al. // Nucl. Mater. Energy. - 2015. - V. 3-4. - P. 17-21.
Tokiwai M. and Morozumi S. // Trans. Jpn. Institute of Metals. - 1980. - V. 21. - No. 2. - P. 72-82.
Коротаев А.Д., Тюменцев А.Н., Суховаров В.Ф. Дисперсное упрочнение тугоплавких металлов. - Новосибирск: Наука, 1989. - 211 с.
Tyumentsev A.N., Korotaev A.D., Pinzhin Yu.P., et al. // J. Nucl. Mater. - 2007. - V. 367- 370. - Р. 853-857.
Horz G. // Metallurg. Trans. - 1972. - V. 3. - No. 2. - P. 3069-3076.
Kolobov Yu.R., Valiev R.Z., Grabovetskaya G.P., et al. Grain Boundary Diffusion and Properties of Nanostructured Materials. - Cambridge: Cambridge International Science Publishing, 2007. - 250 p.
Фромм Е., Гебхардт Е. Газы и углерод в металлах. - М.: Металлургия, 1980. - 712 с.