Evaluation of the diffusion coefficient of doxorubicine molecules in aqueous solution in the volume of porous carrier | Izvestiya vuzov. Fizika. 2019. № 12. DOI: 10.17223/00213411/62/12/146

Evaluation of the diffusion coefficient of doxorubicine molecules in aqueous solution in the volume of porous carrier

An experimental study of the phenomenon of diffusion of solution components in nanoscale pores is extremely difficult and, in some cases, impossible. An effective way to obtain qualitative and quantitative estimates of the characteristics of the diffusion process is a computer simulation. A nanoscale numerical model is proposed based on the method of dissipative particle dynamics to estimate the diffusion coefficient of solute molecules in pores of various sizes. An aqueous solution of the anticancer antibiotic doxorubicin in the pores of hydroxyapatite (a promising carrier for solving the problems of targeted delivery of highly toxic drugs) is considered as a model system. Using the developed model, estimates of the diffusion coefficient of doxorubicin in pores of various linear sizes, as well as for different values of the volume concentration of the antibiotic, were obtained. It has been established, in particular, that with increasing pore size, the diffusion coefficient of doxorubicin increases by an order of magnitude and, starting with a pore size of 300 nm, reaches saturation. An increase in the concentration of the antibiotic from 0.1% to 5% leads to a decrease in the diffusion coefficient by more than 1.5 times. The developed model can be used in solving problems of predicting the output rate of solution components (including drugs) from the pore volume of solid-phase carriers of various types.

Download file
Counter downloads: 100

Keywords

пористый носитель, доксорубицин, диффузия, компьютерное моделирование, метод частиц, doxorubicin, porous carrier, diffusion, computer modeling, particle method

Authors

NameOrganizationE-mail
Shilko E.V.Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State Universityshilko@ispms.tsc.ru
Dudkin I.V.Institute of Strength Physics and Materials Science of SB RASpokrovitelchar@mail.ru
Smolin A.Yu.Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk State Universityasmolin@ispms.ru
Krukovskii K.V.Institute of Strength Physics and Materials Science of SB RASkvk@ispms.ru
Lotkov A.I.Institute of Strength Physics and Materials Science of SB RASlotkov@ispms.ru
Всего: 5

References

Groot R.D. and Warren P.B. // J. Chem. Phys. - 1997. - V. 107. - P. 4423.
Leung A.H., Hawthorn B.R., and Simpson A.H. // Open Orthop. J. - 2015. - No. 9. - Р. 372-378.
Wu C.C., Huang Y.K., Chang W.J., et al. // J. Biomed. Mater. Res. B. Appl. Biomater. - 2016. - No. 18. - Р. 55-64.
Guo X.D., Zhang L.J., Wu Z.M., and Qian Y. // Macromolecules. - 2010. - V. 43. - P. 7839- 7844.
Guo X.D., Zhang L.J., and Qian Y. // Ind. Eng. Chem. Res. - 2012. - V. 51. - P. 4719-4730.
Nie S.Y., Sun Y., Lin W.J., et al. // J. Phys. Chem. B. - 2013. - V. 117. - P. 13688-13697.
Lin W.J., Nie S.Y., Chen Q., et al. // AIChE J. - 2014. - V. 60. - No. 10. - P. 3634-3646.
Groot R.D. and Rabone K.L. // Biophys. J. - 2001. - V. 81. - P. 725-736.
Kumar A., Asako Y., Abu-Nada E., et al. // Microfluid. Nanofluid. - 2009. - V. 7. - P. 467-477.
Füchslin R.M., Fellermann H., Eriksson A., and Ziock H.-J. // J. Chem. Phys. - 2009. - V. 130. - P. 214102.
Psakhie S.G, Moiseyenko D.D., Smolin A.Yu., et al. // Comp. Mater. Sci. - 1999. - V. 16. - P. 333-343.
Димаки А.В., Дудкин И.В., Попов В.Л., Шилько Е.В. // Изв. вузов. Физика. - 2019. - T. 62. - № 8. - С. 84-94.
Mahdavi M., Rahmani F., and Nouranian S. // J. Mater. Chem. B. - 2016. - V. 4. - P. 7441- 7451.
 Evaluation of the diffusion coefficient of doxorubicine molecules in aqueous solution in the volume of porous carrier | Izvestiya vuzov. Fizika. 2019. № 12. DOI: 10.17223/00213411/62/12/146

Evaluation of the diffusion coefficient of doxorubicine molecules in aqueous solution in the volume of porous carrier | Izvestiya vuzov. Fizika. 2019. № 12. DOI: 10.17223/00213411/62/12/146