Geometrical optics in the universe with dark matter domination | Izvestiya vuzov. Fizika. 2020. № 1. DOI: 10.17223/00213411/63/1/52

Geometrical optics in the universe with dark matter domination

The cosmological Friedmann model has been generalized for the epoch of dark matter domination. Moreover, its equation of state was chosen in a new - non-stationary form. Based on the process of light propagation in such a metric, its refractive index was found which turned out to quantity constant (more precisely, depending on the era of the end of dominance of dark matter) and the possible effect of a burst of incoming radiation was predicted.

Download file
Counter downloads: 122

Keywords

космология Фридмана, темная материя, нестационарное уравнение состояния, гравитационные линзы, Friedmann cosmology, dark matter, non-stationary equation of state, gravitational lenses

Authors

NameOrganizationE-mail
Chechin L.M.V.G. Fesenkov Astrophysical Institute «NCSRT» NSA RK; Al-Farabi Kazakh National Universitychechin-lm@mail.ru
Kurmanov E.B.Al-Farabi Kazakh National Universityergaly_90@mail.ru
Konysbayev T.K.V.G. Fesenkov Astrophysical Institute «NCSRT» NSA RKtalgar_777@mail.ru
Всего: 3

References

Occo F., Pato M.,Bertone G., et al. // J. Cosmol. Astropart. Phys. - 2011. - V. 2011. - P. 029. DOI: 10.1088/1475-7516/2011/11/029.
Bertone G., Hooper D., and Silk J. // Phys. Rep. - 2005. - V. 405. - Iss. 5-6. - P. 279-390. DOI: 10.1016/j.physrep.2004.08.031.
Ade P.A.R. et al. Planck Collaboration // Astron. and Astrophys J. - 2013. - V. 1303. - P. 1-48. DOI: 10.1051/0004-6361/201321529.
Berezinsky V.S., Dokuchaev V.I., and Eroshenko Yu.N. // UFN. - 2014. - V. 57. - P. 1-36. DOI: 10.3367 /UFNr.0184.201401a.0003.
Green A.M., Hofmann S., and Schwarz D.J. // MNRAS. - 2004. - V. 353. - Iss. 3. - P. 23-27. DOI: 10.1111/j.1365-2966.2004.08232.x.
Landau L.D. and Lifshitz E.M. Statistical Physics. - London: Butterworth-Heinemann, 1980. - 544 p.
Dolgov A.D., Sazhin M.V., and Zeldovich Ya.B. Basics of Modern Cosmology. Editions Frontiers. - 1990.
Linde A.D. Elementary Particle Physics and Inflationary Cosmology. - 1 edition. - Boca Raton: CRC Press, 1990. - 384 p.
Толмен Р.Ч. Относительность, термодинамика и космология. - Наука, 1974. - 520 c.
Болотин Ю.Л., Ерохин Д.А., Лемец О.А. // УФН. - 2012. - Т. 182. - С. 941-986. DOI: 10.3367/UFNr.0182.201209c.0941.
http://www.astronet.ru/db/msg/1202878/index.html
Блиох П.В., Минаков A.A. Гравитационные линзы. - Киев: Наукова думка, 1989. - 237 c.
Чечин Л.M., Авхунбаева Г.M. // Изв. вузов. Физика. - 2013. - Т. 56. - № 2. - С. 30-35.
Чечин Л.М., Кайраткызы Д. // Доклады НАН РК. - 2014. - № 3.
Чечин Л.М., Курманов Е.Б. // Rec. Cont. Phys. - 2019. - No. 1(68).
Gardner S. and Latimer D.C. // Phys. Rev. D. - 2010. - V. 82. - Iss. 6-15. DOI: 10.1103/PhysRevD.82.063506.
Linder E.V. // Thesis Stanford Univ., CA. - 1988. - V. 48. - No. 8.
Чечин Л.M., Кайраткызы Д., Конысбаев T.K. // Изв. вузов. Физика. - 2018. - Т. 61. - № 5. - С. 65-71.
 Geometrical optics in the universe with dark matter domination | Izvestiya vuzov. Fizika. 2020. № 1. DOI: 10.17223/00213411/63/1/52

Geometrical optics in the universe with dark matter domination | Izvestiya vuzov. Fizika. 2020. № 1. DOI: 10.17223/00213411/63/1/52