The influence of copper phthalocyanine nanostructures on the photovoltaic characteristics of a polymer solar element
The paper presents the results of a study of the influence of copper phthalocyanine (CuPc) nanostructures on the charge carriers generation and mobility in the poly-(3-hexylthiophene) (P3HT) semiconductor polymer. It was shown that the observed broadening and maximum shift in the absorption spectra of P3HT upon the addition of nanostructures to the polymer are associated with an increase of crystallization degree of the film. The observed increase in short circuit current and negative magnetic effect upon the addition of CuPc nanostructures is associated with size effects.
Keywords
P3HT,
фталоцианин меди,
наночастицы,
наноленты,
ВАХ,
магнитный эффект,
спиновое состояние,
P3HT,
copper phthalocyanine,
nanoparticles,
nanowires,
current-voltage characteristic,
magnetic effect,
spin stateAuthors
Aimukhanov A.K. | Buketov Karaganda State University | a_k_aitbek@mail.ru |
Zeinidenov A.K. | Buketov Karaganda State University | asyl-zeinidenov@mail.ru |
Zavgorodniy A.V. | Buketov Karaganda State University | alexzavgorodniy@inbox.ru |
Kopylova T.N. | National Research Tomsk State University | kopylova@phys.tsu.ru |
Gadirov R.M. | National Research Tomsk State University | grm882@ngs.ru |
Всего: 5
References
Skotheim T.A. and Reynolds J.R.Handbook of Conducting Polymers. - Boca Raton: CRC Press, 2007.
Shaheen S.E., Ginley D.S., and Jabbour G.E. // MRS Bulletin. - 2005. - V. 30. - No. 1. - P. 10-19.
Etxebarria I., Ajuria J., and Pacios R. // Org. Electron. - 2015. - V. 19. - P. 34-60.
Ilyassov B.R., Alekseev А.M., et al. // Bulletin of the University of Karaganda-Physics. - 2016. - V. 80. - No. 3. - P. 27-33.
Vidya C., Hoskeri P.A., and Joseph C.M. // Mater. Today-Proc. - 2015. - V. 2. - P. 1770-1775.
Keeratithiwakorn P., Songkeaw P., et al. // Mater. Today-Proc. - 2017. - V. 4. - P. 6194-6199.
Kim K., Ihm K., and Kim B. // Acta Phys. Pol. A. - 2015. - V. 127. - No. 4. - P. 1176-1179.
Liu F., Sun J., et al. // Nanotechnology. - 2015. - V. 26. - No. 22. - P. 225601.
Asahi T., Tamaki Y., et al. // Handai Nanophotonics. - 2004. - V. 1. - P. 225-236.
Zavgorodniy A.V., Aimukhanov A.K., et al. // Bulletin of the University of Karaganda-Physics. - 2019. - V. 93. - No. 1. - P. 18-25.
Yan L., Wu Y., et al. // Synth. Met. - 2009. - V. 159. - No. 21-22. - P. 2323-2325.
Liao M.S. and Scheiner S. // J. Chem. Phys. - 2001. - V. 114. - No. 22. - P. 9780-9791.
El-Nahass M.M., Bahabri F.S., and Al-Harbi R. // Egypt. J. Solid. - 2001. - V. 24. - No. 1. - P. 11-19.
Zou T., Wang X., et al. // Crystals. - 2018. - V. 8. - No. 1. - P. 22.
Keeratithiwakorn P., Songkeaw P., et al. // Mater. Today-Proc. - 2017. - V. 4. - P. 6194-6199.
Hussein A.A., Hussain W.A., and Hassan K. // J. Zankoy Sulaimani. Part A. - 2015. - V. 17. - No. 1. - P. 167-176.
Khanam J.J. and Foo S.Y. // Polymers. - 2019. - V. 11. - No. 2. - P. 383.
Tiwari S. and Greenham N.C. // Op. Quantum Electron. - 2009. - V. 41. - No. 2. - P. 69-89.
Mihailetchi V.D., Xie H.X., et al. // Adv. Funct. Mater. - 2006. - V. 16. - P. 699-708.
Zang H., Ivanov I.N., and Hu B. // IEEE J. Selected Topics in Quantum Electron. - 2010. - V. 16. - No. 6. - P. 1801-1806.
Janssen P., Cox M., et al. // Nature Commun. - 2013. - V. 4. - P. 2286.
Wagemans W. and Koopmans B. // Phys. Status Solidi B. - 2011. - V. 248. - No. 5. - P. 1029-1041.
Bobbert P.A., Nguyen T.D., et al. // Phys. Rev. Lett. - 2007. - V. 99. - No. 21. - P. 216801.