Electroosmosis effect in thin channels | Izvestiya vuzov. Fizika. 2020. № 1. DOI: 10.17223/00213411/63/1/101

Electroosmosis effect in thin channels

This work is devoted to the development of a theoretical calculation method for studying the electrokinetic phenomena arising on the solid surface - electrolyte interface in the continuous medium model approach. The main characteristic structure element arising on such interface is the double electric layer (DEL). In a system with this structure, the average mass movement of the liquid may occur. This is due to the additional movement of the electrolyte in the DEL (as a result of the presence of an external electric field, and as a result of heterogeneous physical and chemical properties of a surface), which, in turn, through friction forces, leads to the specified flow outside the DEL. The study of such phenomena is important in methods of geophysical studies interpretation in wells, determination of electric properties of core materials, and also in various chemical technologies. The electroosmosis effect associated with the adsorption of electrolyte ions on a solid surface both in the absence and in the presence of an external electric field is demonstrated.

Download file
Counter downloads: 140

Keywords

двойной электрический слой, энергия Гельмгольца, электроосмос, численное моделирование, electric double layer, Helmholtz energy, electroosmosis, numerical simulation

Authors

NameOrganizationE-mail
Demianov A.Y.Moscow Institute of Physics and Technologyalexdem236@yandex.ru
Dinariev O.Y.The Schlumberger Moscow Research Center (SMR)odinariev@slb.com
Sharaborin E.L.Skolkovo Institute of Science and Technologymail: evgenii.sharaborin@skoltech.ru
Всего: 3

References

Духин С.С., Дерягин Б.В. Электрофорез. - М.: Наука, 1976. - 332 с.
Фридрихсберг Д.А. Курс коллоидной химии. - Л.: Химия, 1974. - 352 с.
Хаазе Р. Термодинамика необратимых процессов: пер. с нем. под ред. А.В. Лыкова. - М.: Мир, 1967. - 544 с.
Фридрихсберг Д.А. Курс коллоидной химии. - Л.: Химия, 1974. - С. 18-352 с.
Stern O. // Berichte der Bunsengesellschaft für physikalische Chemie. - 1924. - V. 30. - P. 508-516.
Chapman D.L. // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. - 1913. - V. 25. - No. 6. - P. 475-481.
Дзялошинский И.Е., Лифшиц Е.М., Питаевский Л.П. // УФН. - 1961. - Т. 73. - Вып. 3. - С. 381-422.
Buhman S.Y. Dispersion Forces I. - Berlin: Springer Verlag, 2012. - 330 p.
Grochowski P. and Trylska J. // Biopolymers. - 2008. - V. 89. - P. 93-113.
Kim D. and Darve E. // Phys. Rev. - 2006. - V. 73. - P. 051203.
Gillespie D., Khair A.S., Bardhan J.P., and Pennathur S. // J. Colloid Interfac. Sci. - 2011. - V. 359. - P. 520-529.
Измайлов Н.А. Электрохимия растворов. - 3-e изд. - М.: Химия, 1976. - 488 с.
Козюк А.И. Численное моделирование двойного электрического слоя на границе раздела горная порода-электролит: дис. магистратуры. - М.: МФТИ, 2013.
MacCormack R.W. // AIAA Journal. - 1982. - V. 20. - No. 9. - P. 1275-1281.
Яненко Н.Н. Метод дробных шагов решения многомерных задач математической физики. - Новосибирск: Наука, 1967. - 197. с.
 Electroosmosis effect in thin channels | Izvestiya vuzov. Fizika. 2020. № 1. DOI: 10.17223/00213411/63/1/101

Electroosmosis effect in thin channels | Izvestiya vuzov. Fizika. 2020. № 1. DOI: 10.17223/00213411/63/1/101