Numerical calculation electrophysical and thermodynamic characteristics of plasma of a glow discharge in oxygen atmospheric pressure formed after spark
The article presents the results of numerical calculations by the finite element method of the space-time dynamics of the electrophysical and thermodynamic characteristics of atmospheric-pressure oxygen plasma after a spark breakdown in a gas-discharge gap of 1 mm. In the calculations, we used a two-dimensional axially symmetric model of plasma in the drift-diffusion approximation, as well as the Navier-Stokes and thermal conductivity equations. The discharge characteristics were calculated without taking into account and taking into account the plasma heating for various parameters of the electrical circuit. It is shown that at a breakdown voltage of 3500 V and plasma heating, the development of a discharge leads to the formation of a stationary direct current discharge localized in the limited volume. A comparative analysis of the effect of electronegative properties of the gas and heating of the plasma on a spatial-temporal dynamics of electrophysical and thermodynamic characteristics of this discharge has been carried out.
Keywords
плазма атмосферного давления,
тлеющий разряд,
численное моделирование плазмы,
электроотрицательный газ,
переход искры в тлеющий разряд,
биомедицинские приложения,
atmospheric pressure plasma,
glow discharge,
plasma numerical simulation,
electronegative gas,
transition of a spark into a glow discharge,
biomedical applicationsAuthors
Demkin V.P. | National Research Tomsk State University | demkin@ido.tsu.ru |
Melnichuk S.V. | National Research Tomsk State University | osbereg@yandex.ru |
Postnikov A.V. | National Research Tomsk State University | postnikov_a_v@list.ru |
Всего: 3
References
Laroussi M., Lu X., and Keidar M. // J. Appl. Phys. - 2017. - V. 122. - P. 020901.
Lotfy K. // J. Mod. Phys. - 2017. - V. 8. - No. 11. - P. 1901-1910.
Laroussi M. // Plasma. - 2018. - V. 1. - No. 1. - P. 47-60.
Graves D. B. // Phys. Plasmas. - 2014. - V. 21. - P. 080901.
Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. - 2012. - V. 40. - No. 11. - P. 2837-2842.
Korolev Y.D. // Russ. J. General Chem. - 2015. - V. 85. - No. 5. - P. 1311-1325.
Demkin V.P., Melnichuk S.V., Demkin O.V., et al. // Phys. Plasmas. - 2016. - V. 23. - P. 043509.
Demkin V.P., Melnichuk S.V., and Postnikov A.V. // Phys. Plasmas. - 2018. - V. 25. - P. 083502.
Liu D.X., Li J.F., Yang A.J., et al. // High Voltage. - 2016. - V. 1. - No. 2. - P. 81-85.
Dobrynin D., Fridman G., Friedman G., et al. // New J. Phys. - 2009. - V. 11. - P. 115020.
Von Woedtke T., Metelmann H-R., and Weltmann K.D. // Contrib. Plasma Phys. - 2014. - V. 54. - No. 2. - P. 104-117.
Bogdanov E.A., Kolobov V.I., Kudryavtsev A.A., et al. // Tech. Phys. - 2002. - V. 47. - No. 8. - P. 946.
Gibson A.R. and Gans T. // Plasma Sources Sci. Technol. - 2017. - V. 26. - No. 11. - P. 115007.
McKay K., Liu D.X., Rong M.Z., et al. // Appl. Phys. Lett. - 2011. - V. 99. - P. 091501.
Neufeld P.D., Janzen A.R., and Aziz R.A. // J. Chem. Phys. - 1972. - V. 57. - P. 1100-1102.
Brokaw R.S. // Ind. Eng. Process Design Develop. - 1969. - V. 8. - P. 240-253.
Gordon S. and McBride B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations, NASA-SP-273, 1971.
Stiel L.I. and Thodos G. // AIChE J. - 1964. - V. 10. - P. 26-30.
Liu D-X., Rong M-Z., Wang X-H., et al. // Plasma Process. Polym. - 2010. - V. 7. - P. 846-865.
Itikawa Y., Ichimura A., Onda K., et al. // J. Phys. Chem. Ref. Data. - 1989. - V. 18. - P. 23-42.
Fleming I.A. and Rees J.A. // J. Phys. B. - 1996. - V. 2. - No. 2. - P. 423-425.
Okuyama Y., Kimura T., Suzuki S., et al. // J. Phys. D: Appl. Phys. - 2012. - V. 45. - P. 195202.
Hagelaar G.J.M. and Pitchford L.C. // Plasma Sources Sci. Technol. - 2005. - V. 14. - P. 722-733.