Admittance of barrier structures based on mercury cadmium telluride
The results of studies of the admittance of unipolar barrier structures based on HgCdTe grown by molecular beam epitaxy on GaAs (013) substrates are presented. Using passivation with an Al2O3 dielectric, device nBn structures based on HgCdTe were fabricated, and the layer parameters in the created structures provided the possibility of detection in the spectral range of 3-5 μm. Based on the analysis of the frequency dependences of the admittance, an equivalent circuit of nBn structures at small biases is proposed. The dependences of the parameters of the equivalent circuit on the mesa structure area and on temperature are determined. The properties of high-temperature maxima on the on the voltage dependences of capacitance and conductance of nBn structures, which are presumably associated with the recharging of surface states at the heterointerface between the barrier and absorbing layers, are studied. It was found that in a wide range of frequencies and temperatures, the capacitance-voltage characteristics of nBn structures based on HgCdTe at reverse biases can be used to determine the concentration of donor impurities in the absorbing layer. It is shown that the admittance of test MIS devices in the mesa configuration, formed on the basis of nBn structures from MBE HgCdTe, is determined by the combined influence of processes in the contact, barrier, and absorbing layers.
Keywords
HgCdTe,
молекулярно-лучевая эпитаксия,
nBn-структура,
барьерные детекторы,
адмиттанс,
вольт-фарадная характеристика,
метод эквивалентных схем,
концентрация примеси,
HgCdTe,
molecular beam epitaxy,
nBn structure,
barrier detectors,
admittance,
capacitance-voltage characteristic,
equivalent circuit method,
dopant concentrationAuthors
Voitsekhovskii A.V. | National Research Tomsk State University | vav43@mail.tsu.ru |
Nesmelov S.N. | National Research Tomsk State University | nesm69@mail.ru |
Dzyadukh S.M. | National Research Tomsk State University | bonespirit@mail2000.ru |
Dvoretsky S.A. | National Research Tomsk State University; Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS | dvor@isp.nsc.ru |
Mikhailov N.N. | Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS | mikhailov@isp.nsc.ru |
Sidorov G.Yu. | Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS | george@isp.nsc.ru |
Yakushev M.B. | Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS | yakushev@isp.nsc.ru |
Всего: 7
References
Rogalski A. Infrared and Terahertz detectors. - 3rd. ed. - Boca Raton: CRC Press, Taylor & Francis Group, 2019. - 1044 p.
Kinch M.A. State-of-the-Art Infrared Detector Technology. - Bellingham, Washngton: SPIE Press, 2014. - 262 p.
Lobre C., Jouneau P. H., Mollard L., et al. // J. Electron. Mater. - 2014. - V. 43. - P. 2908-2914.
Izhnin I.I., Mynbaev K.D., Voitsekhovsky A.V., et al. // Infrared Phys. Technol. - 2019. - V. 98. - P. 230-235.
White A.M. Infra red detectors // Патент 4679063 США, 1983.
Klipstein P. Depletion-less photodiode with suppressed dark current and method for producing the same // Патент 7795640 США, 2003.
Maimon S. and Wicks G.W. // Appl. Phys. Lett. - 2006. - V. 89. - No. 15. - P. 151109.
Ting D.Z., Soibel A., Khoshakhlagh A., et al. // Appl. Phys. Lett. - 2018. - V. 113. - P. 021101.
Soibel A., Ting D.Z., Hill C.J., et al. // Appl. Phys. Lett. - 2016. - V. 109. - P. 103505.
Evirgen A., Abautret J., Perez J.P., et al. // Electron. Lett. - 2014. - V. 50. - P. 1472-73.
Soibel A., Ting D.Z., Rafol S.B., et al. // Appl. Phys. Lett. - 2019. - V. 114. - P. 161103.
Akhavan N.D., Umana-Membreno G.A., Gu R., et al. // IEEE Trans. Electron Dev. - 2016. - V. 63. - No. 12. - P. 4811-4818.
Kopytko M., Wróbel J., Jóźwikowski K., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 1. - P. 158-166.
Uzgur F. and Kocaman S. // Infrared Phys. Technol. - 2019. - V. 97. - P. 123-128.
Ye Z.H., Chen Y.Y., Zhang P., et al. // Proc. SPIE. - 2014. - V. 9070. - P. 90701L.
Itsuno A.M., Phillips J.D., and Velicu S. // J. Electron. Mater. - 2011. - V. 40. - No. 8. - P. 1624-1629.
Martyniuk P., Kopytko M., and Rogalski A. // Opto-Electron. Rev. - 2014. - V. 22. - No. 2. - P. 127-146.
Itsuno A.M., Phillips J.D., and Velicu S. // Appl. Phys. Lett. - 2012. - V. 100. - No. 16. - P. 161102.
Velicu S., Zhao J., Morley M., et al. // Proc. SPIE. - 2012. - V. 8268. - P. 826282X.
Gravrand O., Boulard F., Ferron A., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 9. - P. 3069- 3075.
Kopytko M., Kębłowski A., Gawron W., et al. // IEEE Trans. Electron Dev. - 2014. - V. 61. - No. 11. - P. 3803-3807.
Kopytko M. and Rogalski A. // Prog. Quant. Electron. - 2016. - V. 47. - P. 1-18.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // Infrared Phys. Technol. - 2019. - V. 102. - P. 103035.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // J. Phys. D: Appl. Phys. - 2020. - V. 53. - No. 5. - P. 055107.
Nicollian E.H. and Brews J.R. MOS (metal oxide semiconductor) physics and technology. - N.Y. et al.: Wiley, 1982. - 906 p.
Sze S.M. and Ng Kwok K. Physics of Semiconductor Devices. - 3rd ed. - N.Y.: Wiley, 2007. - 832 p.
Voitsekhovskii A.V., Nesmelov S.N., and Dzyadukh S.M. // J. Phys. Chem. Sol. - 2017. - V. 102. - P. 42-48.
Hirwa H., Pittner S., and Wagner V. // Org. Electron. - 2015. - V. 24. - P. 303-314.
Rhiger D.R., Smith E.P., Kolasa B.P., et al. // J. Electron. Mater. - 2016. - V. 45. - No. 9. - P. 4646-4653.
Glasmann A., Prigozhin I., and Bellotti E. // IEEE J. Electron Dev. Soc. - 2019. - V. 7. - P. 534- 543.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // Mater. Res. Expr. - 2019. - V. 6. - No. 11. - P. 116411.
Войцеховский А.В., Несмелов С.Н., Дзядух С.М. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 5. - С. 77-85.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // J. Comm. Technol. Electron. - 2019. - V. 64. - No. 3. - P. 289-293.
Fu R. and Pattison J. // Opt. Eng. - 2012. - V. 51. - No. 10. - P. 104003.
Zakirov E.R., Kesler V.G., Sidorov G.Y., et al. // Semicond. Sci. Technol. - 2019. - V. 34. - No. 6. - P. 065007.
Ershov M., Liu H.C., Li L., et al. // IEEE Trans. Electron. Dev. - 1998. - V. 45. - No. 10. - P. 2196- 2206.
Jones B.K., Santana J., McPherson M., et al. // Sol. State Commun. - 1998. - V. 107. - No. 2. - P. 47-50.
Penin N.A. // Semiconductors. - 1996. - V. 30. - No. 4. - P. 340-343.
Войцеховский А.В., Несмелов С.Н., Дзядух С.М. и др. // Изв. вузов. Физика. - 2014. - Т. 57. - № 4. - С. 102-109.
Войцеховский А.В., Несмелов С.Н., Дзядух С.М. и др. // Изв. вузов. Физика. - 2014. - Т. 57. - № 5. - С. 62-69.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // Infrared Phys. Technol. - 2015. - V. 71. - P. 236-241.
Van Gelder W. and Nicollian E.H. // J. Electrochem. Soc. - 1971. - V. 118. - P. 138-141.