Mechanical and rheological properties of biodegradable polycaprolactone-carbon nanotube composites
Mechanical and rheological properties of novel polymer polycaprolactone-based composites filled with single-walled carbon nanotubes were studied. All composites were fabricated by melt compounding. Adding of carbon nanotubes into polycaprolactone results in the increase of Young’s modulus by 75% and decrease in the stress and elongation at break by almost two times compared to those for neat polycaprolactone. Melt flow index of composites is decreased about 10 times compared to that for neat PCL.
Download file
Counter downloads: 145
Keywords
поликапролактон, одностенные углеродные нанотрубки, биоразлагаемые полимерные композиции, механические и реологические свойства, polycaprolactone, single-walled carbon nanotubes, biodegradable polymer composites, mechanical and rheological propertiesAuthors
Name | Organization | |
Lebedev S.M. | National Research Tomsk Polytechnic University | lsm70@mail.ru |
Amitov E.T. | National Research Tomsk Polytechnic University | ernar_amitov.91@mail.ru |
References
Antolin-Cerón V.H., Gómez-Salazar S., Rabelero M., et al. // Polymer Composites. - 2012. - P. 562-572, https://doi.org/10.1002/pc.22175.
Bartolo P., Domingos M., Gloria F., and Ciurana J. // CIRP Annals - Manufacturing Technology. - 2011. - V. 60. - P. 271-274, https://doi.org/10.1016/j.cirp.2011.03.116.
Domingos M. // Rapid Prototyping J. - 2012. - V. 18. - P. 56-67, https://doi.org/10.1108/13552541211193502.
Sánchez-González S., Diban N., and Urtiaga A. // Membranes. - 2018. - V. 8, https://doi.org/ 10.3390/membranes8010012.
Li Y., Han C., Zhang X., et al. // Polymer Composites. - 2013. - P. 1620-1628, https://doi.org/10.1002/ pc.22562.
Fukushima K., Tabuani D., Abbate C., et al. // Eur. Polymer J. - 2011. - V. 47. - P. 139-152, https://doi.org/10.1016/j.eurpolymj.2010.10.027.
Лебедев С.М., Амитов Е.Т., Микутский Е.А. // Изв. вузов. Физика. - 2019. - Т. 62. - № 10. - С. 3-11.
Leigh S.J., Bradley R.J., Purssell C.P., et al. // PLoS One. - 2012. - V. 7. - Article No. e49365.
Pan L., Pei X., He R., et al. // Colloids Surf. B: Biointerfac. - 2012. - V. 93. - P. 226-234, https://doi.org/10.1016/j.colsurfb.2012.01.011.
Yang Z.-X., Liu X., Shao Y., et al. // Polymer Composites. - 2018, https://doi.org/10.1002/pc.
Unal S., Arslan S., Gokce T., et al. // Eur. Polymer J. - 2019. - V. 115. - P. 157-165, https://doi.org/10.1016/ j.eurpolymj.2019.03.027.
Song J., Gao H., Zhu G., et al. // Carbon. - 2015. - V. 95. - P. 1039-1050, http://dx.doi.org/10.1016/j.carbon.2015.09.011.
Zakaria Z., Islam M.S., Hassan A., et al. // Adv. Mater. Sci. Eng. - 2013, https://doi.org/ 10.1155/2013/629092.
Pilla S., Gong S., O’Neill E., et al. // Polymer Eng. Sci. - 2008. - V. 48. - P. 578-587, https://doi.org/10.1002/pen.20971.
Lebedev S.M., Gefle O.S., Amitov E.T., et al. // Int. J. Adv. Manufact. Tech98. - 2018. - V. 97(1-4). - P. 511-518, https://doi.org/10.1007/ s00170-018-1953-6.