Formation of the grain structure of the Ni3Al intermetallic compound at high-temperature synthesis under pressure
The results of a theoretical and experimental study of the grain structure formation patterns in the Ni3Al intermetallic compound synthesized under pressure under the conditions of a volume exothermic reaction of its formation in a powder mixture of stoichiometric composition are presented. It was shown that the grain size in the synthesized intermetallic compact depends both on the value of the preliminary load on the initial powder mixture and on the degree of deformation of the high-temperature synthesis product at the stage of its crystallization. It has been established that while an increase in the load on the initial powder mixture initiates a general decrease in grain size in the volume of the synthesized intermetallic compact, deformation of the high-temperature synthesis product allows multiple reductions in grain size while simultaneously averaging the grain size distribution in the volume of the synthesized intermetallic compound under pressure.
Keywords
Ni3Al,
высокотемпературный синтез,
давление,
продукт синтеза,
размер зерна,
численное моделирование,
Ni3Al,
high temperature synthesis,
pressure,
synthesis product,
grain size,
numerical simulationAuthors
Ovcharenko V.E. | Institute of Strength Physics and Materials Science of SB RAS | ove45@mail.ru |
Lapshin O.V. | Tomsk Scientific Center SB RAS | ovlap@mail.ru |
Akimov K.O. | Institute of Strength Physics and Materials Science of SB RAS | kibaarg@mail.ru |
Kozulin A.A. | Institute of Strength Physics and Materials Science of SB RAS | kozulyn@ftf.tsu.ru |
Всего: 4
References
Stoloff N.S., Liu C.T., and Deevi S.C. // Intermetallics. - 2000. - V. 8 (9-11). - P. 1313-1320.
Sikka V.K., Deevi S.C., Viswanathan S., et al. // Intermetallics. - 2000. - No. 8 (9-11). - P. 1329-1337.
Schulson E.M., Weihs T.P., Viens D.V., and Baker I. // Acta Metall. - 1985. - No. 33. - P. 1587-1591.
Aoki K. and Izumi O. // J. Jpn. I. Met. - 1979. - V. 43. - P. 1190-1196.
Feng T., Li S.P., and Luo H.L. // Acta Metall. Sinica. - 2002. - No. 31. - P. 547-551.
Giamei A.F. and Anton D.L. // Metall. Trans. A. - 1985. - V. 16 (11). - P. 1997-2005.
Jozwik P., Polkowski W., and Bojar Z. // Materials. - 2015. - V. 8. - P. 2537-2568.
Antolak-Dudka A., Krasnowski M., and Kulik T. // Intermetallics. - 2013. - V. 42. - P. 41-44.
Demura M., Suga Y., Umezawa O., et al. // Intermetallics. - 2001. - V. 9. - P. 157-167.
Polkowski W., Jozwik P., and Bojar Z. // Mater. Lett. - 2015. - V. 139. - P. 46-49.
Naplocha K. // Intermetallic Matrix Composites. - 2018. - P. 203-220.
Амосов А.П., Боровинская И.П., Мержанов А.Г. Металлургия и машиностроение: ежеквартальный специализированный информационный бюллетень. - М.: Машиностроение, 2007. - 567 с.
Ovcharenko V.E., Lapshin O.V., and Ramazanov I.S. // Combustion, Explosion, and Shock Waves. - 2006. - V. 42(3). - P. 302-308.
Ovcharenko V.E., Boyangin E.N., Myshlyaev M.M., et al. // Phys. Solid State. - 2015. - V. 57. - No. 7. - P. 1293-1299.
Gottstein G. Physical Foundations of Materials Science. - Berlin: Springer, 2004. - 502 p.
Avvakumov G.V., Mamoru S., and Kosova N.V. Soft Mechanical Synthesis: a Basic for New Chemical Technologies. - Boston, MA: Kluwer Academic Publishers, 2002. - 208 p.
Laby T.H. and Kaye G.W. Tables of Physical and Chemical Constants. - N.Y.: Longman, 1995. - 512 p.
Li H., Zheng L., Zhang H., et al. // Procedia Eng. - 2012. - No. 27. - P. 1187-1192.
Mukasyan A.S. and Shuk C.E. // Int. J. Self-Propagating High-Temperature Synthesis. - 2017. - V. 26(3). - P. 145-165.
Овчаренко В.Е., Федорищева М.В. // Изв. вузов. Физика. - 1999. - Т. 41. - № 7. - С. 53-56.
Bazhin P.M., Stolin A.M., and Alymov M.I. // Nanotechnologies in Russia. - 2014. - V. 9 (11-12). - P. 583-600.