Features of the discharge formation in the trigger unit based on breakdown over the semiconductor surface in the sealed-off cold-cathode thyratron | Izvestiya vuzov. Fizika. 2020. № 5. DOI: 10.17223/00213411/63/5/90

Features of the discharge formation in the trigger unit based on breakdown over the semiconductor surface in the sealed-off cold-cathode thyratron

The results of investigation of pulsed discharge in the trigger unit based on breakdown over the semiconductor surface in the sealed-off cold-cathode thyratrons TDI1-50k/50 are presented. Method for estimation of surface discharge current values is proposed. Based on data on current distribution between the trigger unit electrodes, the mechanisms of discharge formation in the trigger unit are revealed.Data on delay times and jitter in delay times to ignition of hollow-anode arc discharge in the trigger unit and to breakdown in the thyratron main gap were obtained. It is shown that with the increase of semiconductor resistance delay times and jitter increase. The trigger circuit, whichprovides jitter in delay times to breakdown in the thyratron main gap within 10 nsis offered.

Download file
Counter downloads: 102

Keywords

тиратрон с холодным катодом, поверхностный разряд, дуговой разряд с полым анодом, cold cathode thyratron, surface discharge, hollow-anode arc discharge

Authors

NameOrganizationE-mail
Landl N.V.Institute of High Current Electronics SB RASlandl@lnp.hcei.tsc.ru
Korolev Y.D.Institute of High Current Electronics SB RASkorolev@lnp.hcei.tsc.ru
Argunov G.A.Institute of High Current Electronics SB RASargunov.grigory@yandex.ru
Geyman V.G.Institute of High Current Electronics SB RASgeyman@lnp.hcei.tsc.ru
Frants O.B.Institute of High Current Electronics SB RASfrants@lnp.hcei.tsc.ru
Bolotov A.V.Institute of High Current Electronics SB RASbav@lnp.hcei.tsc.ru
Всего: 6

References

Korolev Y.D. and Koval N.N. // J. Phys. D: Appl. Phys. - 2018. - V. 51. - No. 32. - P. 323001.
Lamba R.P., Pathania V., Meena B.L., et al.// Rev. Sci. Instrum. - 2015. - V. 86. -P. 103508.
Yan J.Q., Shen S.K., Wang Y.A., et al. // Rev. Sci. Instrum. - 2018. - V. 89. - No. 6. - P. 065102.
Frank K. and Christiansen J. // IEEE Trans. Plasma Sci. - 1989. - V. 17. - No. 5. - P. 748-753.
Kozyrev A.V., Korolev Y.D., Rabotkin V.G., and Shemyakin I.A. // J. Appl. Phys. - 1993. - V. 74. - No. 9. - P. 5366-5371.
Bergmann K., Vieker J., and Wezyk A. // J. Appl. Phys. - 2016. - V. 120. - No. 14. - P. 143302.
Cao X.T., Hu J., Zhang R.X., et al. // AIP Adv. - 2017. - V. 7. - No. 11. - P. 115005.
Kumar N., Pal D.K., Jadon A.S., et al. // Rev. Sci. Instrum. - 2016. - V. 87. - No. 3. - P. 033503.
Zhang J. and Liu X. // IEEE Trans. Dielectr. Electr. Insul. - 2017. - V. 24. - No. 4. - P. 2050-2055.
Korolev Y.D., Landl N.V., Geyman V.G., and Frants O.B. // Phys. Plasmas. - 2018. - V. 25. - No. 11. - 113510.
Korolev Y.D., Frants O.B., Landl N.V., et al. // Phys. Plasmas. - 2017. - V. 24. - No. 10. - 0103526.
Korolev Y.D. // Rus. J. Gen. Chem. - 2015. - V. 85. - No. 5. - P. 1311-1325.
Korolev Y.D., Nekhoroshev V.O., Frants O.B., et al. // J. Phys. Commun. - 2019. - V. 41. - No. 8. - P. 085002.
Ландль Н.В., Королев Ю.Д., Гейман В.Г., Франц О.Б. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 5-12.
Bochkov V.D., Kolesnikov A.V., Korolev Y.D., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - No. 3. - P. 341-346.
Королев Ю.Д., Ландль Н.В., Гейман В.Г. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 7. - С. 162-171.
Zhang J., Li X., Liu Y., et al. // Phys. Plasmas. - 2016. - V. 23. - No. 12. - P. 123525.
Mehr T., Arentz H., Bickel P., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - P. 324-329.
Bochkov V.D., Dyagilev V.M., Ushich V.G., et al. // IEEE Trans. Plasma Sci. - 2001. - V. 29. - No. 5. - P. 802-808.
Ландль Н.В., Королев Ю.Д., Гейман В.Г. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 7. - С. 172-181.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // IEEE Trans. Plasma Sci. - 2015. - V. 43. - No. 8. - P. 2349-2353.
Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. - 2013. - V. 41. - No. 8. - P. 2087.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Plasma Phys. Rep. - 2018. - V. 44. - No. 1. - P. 110.
Akimov A.V., Logachev P.V., Bochkov V.D., et al. // IEEE Trans. Dielectr. Electr. Insul. - 2010. - V. 17. - No. 3. - P. 716.
Akimov A.V., Akimov V.E., Bak P.A., et al. // Instrum. Exp. Tech. - 2012. - V. 55. - No. 2. - P. 218-224.
Kondrat’eva N.P., Koval N.N., Korolev Y.D., and Schanin P.M. // J. Phys. D: Appl. Phys. - 1999. - V. 32. - No. 6. - P. 699.
Shmelev D.L., Barengolts S.A., and Tsventoukh M.M. // Plasma Sources Sci. Technol. - 2014. - V. 23. - P. 062004.
 Features of the discharge formation in the trigger unit based on breakdown over the semiconductor surface in the sealed-off cold-cathode thyratron | Izvestiya vuzov. Fizika. 2020. № 5. DOI: 10.17223/00213411/63/5/90

Features of the discharge formation in the trigger unit based on breakdown over the semiconductor surface in the sealed-off cold-cathode thyratron | Izvestiya vuzov. Fizika. 2020. № 5. DOI: 10.17223/00213411/63/5/90