Impedance of MIS devices based on nBn structures from mercury cadmium telluride | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/8

Impedance of MIS devices based on nBn structures from mercury cadmium telluride

Three types of nBn structures based on mercury cadmium telluride grown by molecular beam epitaxy were fabricated. As the barrier layers in nBn structures, we used Hg1- x Cd x Te at x = 0.67 and 0.84, as well as a superlattice of 18 periods Hg0.20Cd0.80Te (9 nm) - HgTe (2 nm). To study the properties of barrier layers based on nBn structures, MIS devices were created using dielectric Al2O3 films. The impedance of the formed devices is studied in a wide range of voltages, frequencies, and temperatures. Equivalent circuits of MIS devices based on nBn structures in the accumulation mode are proposed. It is shown that measurements of the frequency dependences of the impedance make it possible to determine the differential resistance of the barrier layer in a wide range of conditions. It was established that the determined values of the differential resistance are determined only by the bulk component of the dark current, and the surface leakage component does not affect the measured impedance of MIS devices. The dependences of the values of the elements of the equivalent circuit on the area of structures, on voltage and temperature are determined. It is shown that the differential resistance of the barrier layer based on Hg0.33Cd0.67Te in the temperature range 210-300 K at forward biases is determined by the diffusion-limited flow of holes from the contact layer, and at reverse biases, from the absorbing layer. The values of the product of differential resistance by area for nBn structures with different parameters of the barrier layers are determined. The possibilities of using impedance measurements of MIS devices based on nBn structures to study the uniformity of the properties of various layers are demonstrated.

Download file
Counter downloads: 93

Keywords

HgCdTe, молекулярно-лучевая эпитаксия, инфракрасный детектор, nBn-структура, МДП-прибор, импеданс, эквивалентная схема, дифференциальное сопротивление, объемная компонента темнового тока, HgCdTe, molecular beam epitaxy, infrared detector, nBn structure, MIS device, impedance, equivalent circuit, differential resistance, bulk component of dark current

Authors

NameOrganizationE-mail
Voitsekhovskii A.V.National Research Tomsk State Universityvav43@mail.tsu.ru
Nesmelov S.N.National Research Tomsk State Universitynesm69@mail.ru
Dzyadukh S.M.National Research Tomsk State Universitybonespirit@mail2000.ru
Dvoretsky S.A.National Research Tomsk State University; Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASdvor@isp.nsc.ru
Mikhailov N.N.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASmikhailov@isp.nsc.ru
Sidorov G.Yu.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASgeorge@isp.nsc.ru
Yakushev M.B.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASyakushev@isp.nsc.ru
Всего: 7

References

Rogalski A Infrared and Terahertz Detectors. - 3rd. ed. - Boca Raton: CRC Press, Taylor & Francis Group, 2019. - 1044 p.
Kinch M.A. // J. Electron. Mater. - 2015. - V. 44. - P. 2969-2976.
Reago D.A., Horn S.B., Campbell Jr.J., et al. // Proc. SPIE. - 1999. - V. 3701. - P. 108-117.
Rogalski A., Antoszewski J., and Faraone L. // J. Appl. Phys. - 2009. - V. 105. - P. 091101.
Izhnin I.I., Mynbaev K.D., Voitsekhovsky A.V., et al. // Infrared Phys. Technol. - 2019. - V. 98. - P. 230-235.
Lobre C., Jouneau P.H., Mollard L., et al. // J. Electron. Mater. - 2014. - V. 43. - P. 2908-2914.
Maimon S. and Wicks G.W. // Appl. Phys. Lett. - 2006. - V. 89. - No. 15. - P. 151109.
Ting D.Z., Soibel A., Khoshakhlagh A., et al. // Appl. Phys. Lett. - 2018. - V. 113. - P. 021101.
Soibel A., Ting D.Z., Rafol S.B., et al. // Appl. Phys. Lett. - 2019. - V. 114. - P. 161103.
Plis E., Myers S.A., Ramirez D.A., et al. // Proc. SPIE. - 2016. - V. 9819. - P. 981911.
Evirgen A., Abautret J., Perez J.P., et al. // Electron. Lett. - 2014. - V. 50. - P. 1472-1473.
Akhavan N.D., Umana-Membreno G.A., Gu R., et al. // IEEE Trans. Electron Dev. - 2018. - V. 65. - No. 10. - P. 4340-4345.
Kopytko M. // Infrared Phys. Technol. - 2014. - V. 64. - P. 47-55.
Uzgur F. and Kocaman S. // Infrared Phys. Technol. - 2019. - V. 97. - P. 123-128.
He J., Wang P., Li Q., et al. // IEEE Trans. Electron Dev. - 2020. - V. 67. - No. 5. - P. 2001-2007.
Itsuno A.M., Phillips J.D., and Velicu S. // J. Electron. Mater. - 2011. - V. 40. - No. 8. - P. 1624- 1629.
Itsuno A.M., Phillips J.D., and Velicu S. // Appl. Phys. Lett. - 2012. - V. 100. - No. 16. - P. 161102.
Velicu S., Zhao J., Morley M., et al. // Proc. SPIE. - 2012. - V. 8268. - P. 826282X.
Gravrand O., Boulard F., Ferron A., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 9. - P. 3069- 3075.
Kopytko M. and Rogalski A. // Prog. Quant. Electron. - 2016. - V. 47. - P. 1-18.
Kopytko M., Jóźwikowski K., Martyniuk P., et al. // J. Electron. Mater. - 2016. - V. 45. - No. 9. - P. 4563-4573.
Tennant W.E., Lee D., Zandian M., et al. // J. Electron. Mater. - 2008. - V. 37. - No. 9. - P. 1406- 1410.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // Infrared Phys. Technol. - 2019. - V. 102. - P. 103035.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // J. Phys. D: Appl. Phys. - 2020. - V. 53. - No. 5. - P. 055107.
Akhavan N.D., Jolley G., Umana-Membreno G.A., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 9. - P. 3044-3055.
Rhiger D.R., Smith E.P., Kolasa B.P., et al. // J. Electron. Mater. - 2016. - V. 45. - No. 9. - P. 4646-4653.
Glasmann A., Prigozhin I., and Bellotti E. // IEEE J. Electron Dev. Soc. - 2019. - V. 7. - P. 534- 543.
Alchaar R., Rodriguez J.B., Höglund L., et al. // AIP Adv. - 2019. - V. 9. - No. 5. - P. 055012.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // Mater. Res. Expr. - 2019. - V. 6. - No. 11. - P. 116411.
Войцеховский А.В., Несмелов С.Н., Дзядух С.М. и др. // Изв. вузов. Физика. - 2020. - Т. 63. - № 3. - С. 76-87.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // Semicond. Sci. Technol. - 2020. - V. 35. - No 5. - P. 055026.
Fu R. and Pattison J. // Opt. Eng. - 2012. - V. 51. - No. 10. - P. 104003.
Zakirov E.R., Kesler V.G., Sidorov G.Y., et al. // Semicond. Sci. Technol. - 2019. - V. 34. - No. 6. - P. 065007.
Izhnin I.I., Kurbanov K.R., Voitsekhovskii A.V., et al. // Appl. Nanosci. - 2020. DOI: 10.1007/s13204-020-01297-y.
Hood A., Hoffman D., Nguyen B.M., et al. // Appl. Phys. Lett. - 2006. - V. 89 - No. 9. - P. 093506.
Razeghi M., Haddadi A., Dehzangi A., et al. // Proc. SPIE. - 2017. - V. 10177. - P. 1017705.
Michalczewski K., Ivaldi F., Kubiszyn L., et al. // Acta Phys. Polonica A. - 2017. - V. 132. - P. 325-328.
 Impedance of MIS devices based on <i>nBn</i> structures from mercury cadmium telluride | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/8

Impedance of MIS devices based on nBn structures from mercury cadmium telluride | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/8