Ag-Cu/PMMA nanocomposite, obtained by bimetallic electrical explosive nanoparticles modification | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/25

Ag-Cu/PMMA nanocomposite, obtained by bimetallic electrical explosive nanoparticles modification

Bimetallic nanoparticles Cu-94Ag, Cu-55Ag, Cu-22Ag were obtained by electric explosion of copper and silver wires in an argon medium. As synthesized nanoparticles were characterized by transmission electron microscopy and X-ray diffraction analysis. The nanoparticles have a spherical shape. Copper and silver are distributed uniformly in the nanoparticles volume. Phase compositions corresponding to solid solutions based on copper or silver are present in the samples. The conditions for ultrasonic dispersion of nanoparticle suspensions were selected. According to sedimentation analysis data, the optimal ultrasonic treatment time was 5 min for Cu-65Ag and Cu-22Ag and 2 min for Cu-94Ag nanoparticles using 23 kW ultrasound. The nanoparticles were used as antibacterial modifiers for polymethyl methacrylate. The Ag-Cu/PMMA composites had high antibacterial activity against Escherichia coli.

Download file
Counter downloads: 69

Keywords

электрический взрыв проволочек, биметаллические наночастицы, композитные материалы, electric explosion of wires, bimetallic nanoparticles, composite materials

Authors

NameOrganizationE-mail
Bakina O.V.Institute of Strength Physics and Materials Science of SB RASovbakina@ispms.tsc.ru
Glazkova E.A.Institute of Strength Physics and Materials Science of SB RASeagl@ispms.tsc.ru
Pervikov A.V.Institute of Strength Physics and Materials Science of SB RASpervikov@list.ru
Lozhkomoev A.S.Institute of Strength Physics and Materials Science of SB RASasl@ispms.tsc.ru
Kondranova A.M.Institute of Strength Physics and Materials Science of SB RASamk@ispms.tsc.ru
Lerner M.I.Institute of Strength Physics and Materials Science of SB RASlerner@ispms.tsc.ru
Всего: 6

References

Global Antimicrobial Resistance Surveillance System (GLASS). The Detection and Reporting of Colistin Resistance. - World Health Organization, 2018. - No. WHO/WSI/AMR/2018.4.
Gupta A. et al. // Chem. Soc. Rev. - 2019. - V. 48. - No. 2. - P. 415-427.
Sim W. et al. //Antibiotics. - 2018. - V. 7. - No. 4. - P. 93.
Grass G., Rensing C., and Solioz M. // Appl. Environ. Microbiol. - 2011. - V. 77. - No. 5. - P. 1541- 1547.
Chatterjee A.K., Chakraborty R., and Basu T. // Nanotechnology. - 2014. - V. 25. - No. 13. - P. 135101.
Glazkova E.A. et al. // Recent Patents on Nanotechnology. - 2018. - V. 12. - No. 2. - P. 132-142.
Lerner M. I. et al. // Powder Technology. - 2016. - V. 288. - P. 371-378.
Arrachart G. et al. // J. Mater. Chem. - 2011. - V. 21. - No. 34. - P. 13040-13046.
ISO 22196. Measurement of antibacterial activity on plastics surfaces (Plastics).
Pervikov A. and Lerner M. // Current Appl. Phys. - 2017. - V. 17. - No. 11. - P. 1494-1500.
Первиков А.В., Хрусталев А.П., Бакина О.В. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 8. - С. 183-189.
 Ag-Cu/PMMA nanocomposite, obtained by bimetallic electrical explosive nanoparticles modification | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/25

Ag-Cu/PMMA nanocomposite, obtained by bimetallic electrical explosive nanoparticles modification | Izvestiya vuzov. Fizika. 2020. № 6. DOI: 10.17223/00213411/63/6/25