Vibration properties of the thin films of 3d-transition metals on the Cu (111) surface
We present the results of a comparative study of the structural and vibrational properties the overlayer of Cr and Ni at Cu (111) surface and monolayer of Cr and Ni in subsurface of Cu (111). The surface relaxation, dispersion relation and polarization of vibrational modes for the atoms of Cr and Ni films and the substrate atoms as well as the local density of states have been calculated using the tight-binding approximation. It was found that atomic relaxations of substrate along the surface normal are substantially larger than for the clean Cu (111) surface. Hybridization of the vertically polarized vibrations of the Cr and Ni layers mode with the Rayleigh mode of substrate is observed for all directions Brillouin zone. For Cr/Cu (111) and Ni/Cu (111) systems the Rayleigh mode of the Cu (111) surface shifts to the high frequency region and obtains resonant character for overlayer of both metals. For Cu/Cr/Cu (111) system the Rayleigh mode of the Cu (111) surface shifts to the low frequency region and obtains resonant character, but for Cu/Ni/Cu (111) system the Rayleigh mode of the substrate is restored to values of clean Cu (111) surface.
Keywords
тонкие пленки,
релаксация,
фононы,
thin film,
relaxation,
phononsAuthors
Borisova S.D. | Institute of Strength Physics and Materials Science of SB RAS | svbor@ispms.tsc.ru |
Rusina G.G. | Institute of Strength Physics and Materials Science of SB RAS | rusina@ispms.tsc.ru |
Всего: 2
References
Upton M.H., Miller T., and Chiang T-C. // Appl. Phys. Lett. - 2004. - V. 85. - P. 1235.
Harzer T.P., Djaziri S., Raghavan R., et al. // Acta Mater. - 2015. - V. 83. - P. 318.
Markov A., Yakovlev E., Shepel D., et al. // Results in Physics. - 2019. - V. 12. - P. 1915.
Asada T., Bihlmayer G., Handschuh S., et al. // J. Phys.: Condens. Matter. - 1999. - V. 11. - P. 9347.
Kim S.H., Lee K.S., Min H.G., et al. // Phys. Rev. B. - 1997. - V. 55. - P. 7904.
Tyson W.R. and Miller W.A. // Surf. Sci. - 1977. - V. 62. - P. 267.
Foiles S.M. // Phys. Rev. B. - 1985. - V. 32. - P. 7685.
Platow W., Bovensiepen U., Poulopoulos P., et al. // Phys. Rev. B. - 1999. - V. 59. - P. 12641.
Kang B.S., Chung J.S., Oh S.K., et al. // JMMM. - 2002. - V. 241. - P. 415.
Stuhlmann C. and Ibach H. // Surf. Sci. - 1989. - V. 219. - P. 117.
Русина Г.Г., Борисова С.Д., Чулков Е.В. // Письма в ЖЭТФ. - 2014. - Т. 80. - С. 2020.
РусинаГ.Г., ЧулковЕ.В. // Успехи химии. - 2013. - Т. 82. - С. 483.
Cleri F. and Rosato V. // Phys. Rev. B. - 1993. - V. 48. - P. 22.
Grant K.L., Rawlings R.D., Sweeney R.J. // Mater. Sci. Mater. Med. - 2001. - V. 12. - No. 6. - P. 557-564.
Еремеев С.В., Потекаев А.И. // Изв. вузов. Физика. - 2005. - Т. 48. - № 6. - С. 82.
Verlet L. // Phys. Rev. - 1967. - V. 159. - P. 98.
Chae K.H., Lu H.C., and Gustafsson T. // Phys. Rev. B. - 1996. - V. 54. - P. 14082.
Bohnen K.-P. and Ho K.M. // Surf. Sci. Rep. - 1993. - V. 19. - P. 99.
Mohamed M.H., Kesmodel L.L., Hall Burl M., et al. // Phys. Rev. B. - 1988. - V. 37. - P. 2763.
Heid R. and Bohnen K.-P. // Phys. Rep. - 2003. - V. 387. - P. 151.