Electrophysical studies of ITO films | Izvestiya vuzov. Fizika. 2020. № 7. DOI: 10.17223/00213411/63/7/31

Electrophysical studies of ITO films

The paper presents the results of a study of the electrophysical characteristics of ITO films obtained by magnetron sputtering. It was shown that high-temperature annealing contributes to a significant increase in the ITO films’ electrical conductivity, owing to two processes. First, the high-temperature processing of ITO films after their synthesis promotes a crystalline structure formation, which increases the mobility of charge carriers. Second, as a result of high-temperature annealing, the impurity in ITO films becomes fully electrically active, which leads to an increase in the conduction electrons concentration and to a change in the electrical conductivity mechanism from semiconductor to metal.

Download file
Counter downloads: 123

Keywords

пленки ITO, электропроводность, удельное сопротивление, подвижность носителей заряда, концентрация носителей заряда, ITO films, electrical conductivity, resistivity, charge carrier mobility, charge carrier concentration

Authors

NameOrganizationE-mail
Zhidik Yu. S.Tomsk State University of Control Systems and Radio Electronics; V.E. Zuev Institute of Atmospheric Optics SB RASzhidikyur@mail.ru
Troyan P.E.Tomsk State University of Control Systems and Radio Electronicsp.e.troyan@mail.ru
Kozik V.V.National Research Tomsk State Universityvkozik@mail.ru
Kozyukhin S.A.National Research Tomsk State University; N.S. Kurnakova Institute of General and Inorganic Chemistry RASsergkoz@igic.ras.ru
Zabolotskay A.V.National Research Tomsk State Universitysalon7878@mail.ru
Kuznetsova S.A.National Research Tomsk State Universityonm@chem.tsu.ru
Всего: 6

References

Семикина Т.В., Комащенко В.Н., Шмырева Л.Н. // Электроника и связь. - 2010. - № 3. - С. 20-28.
Лазаренко П.И., Козюхин С.А., Мокшина А.И. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 1. - С. 171-176.
Facchetti A. and Marks T.J. Transparent Electronics: From Synthesis to Applications. - NYSE: Wiley, 2010. - 452 p.
Minami T. // Semicond. Sci. Technol. - 2005. - V. 20. - No. 4. - P. 35-44.
Амосова Л.П. // ФТП. - 2015. - T. 49. - № 3. - С. 426-430.
Korotcenkov G., Ivanov M., Blinov I., and Stetter J.R. // Thin Solid Films. - 2007. - V. 515. - No. 7-8. - P. 3987-3996.
Kim M.G., Kanatzidis N.A., Facchetti A., and Marks T.J. // Nature Mater. - 2011. - V. 10. - No. 5. - P. 382-388.
Жидик Ю.С., Троян П.Е. // Доклады ТУСУРa. - 2012. - № 2(26). - Ч. 2. - С. 169-171.
Амосова Л.П., Исаев М.В. // ЖТФ. - 2014. - Т. 84. - Вып. 10. - С. 127-132.
Смирнов С.В. Методы исследования материалов и структур электроники. - Томск: ТУСУР, 2007. - 143 с.
Gupta L., Mansingh A., and Srivastava P.K. // Thin Solid Films. - 1989. - V. 176. - No. 1. - P. 33- 44.
Calnan S. and Tiwari A.N. // Thin Solid Films. - 2010. - No. 518. - P. 1839-1849.
Битнер Л.Р. Материалы электронной техники. - Томск: ТУСУР, 2019. - 108 с.
Кульчин Ю.Н., Пушкин А.А., Маловицкий Ю.Н. и др. // ФТТ. - 2009. - Т. 51. - № 8. - С. 1530-1532.
 Electrophysical studies of ITO films | Izvestiya vuzov. Fizika. 2020. № 7. DOI: 10.17223/00213411/63/7/31

Electrophysical studies of ITO films | Izvestiya vuzov. Fizika. 2020. № 7. DOI: 10.17223/00213411/63/7/31