Structural and corrosion resistance changes of nickel-chrome coating on stainless steel after high energy Al+ and B+ ion implantation
Magnetron sputtering, vacuum arc deposition, and ion implantation were used to create a three-layer anti-corrosion coating structure on stainless steel samples. The layers were formed on the basis of nickel, chromium, aluminum and boron. The microstructure of the coating was analyzed using scanning and transmission electron microscopy. The chemical composition and concentration profile of the coating was determined using microprobe X-ray spectral analysis. The structural-phase state of the coatings was studied using X-ray microdiffraction and electron-diffraction analysis. The roughness of the experimental samples was determined using contact profilometry. The microhardness of the substrate and coating was determined using sclerometry. Tests for corrosion resistance in salt fog and recording polarization curves showed a significant increase in the corrosion resistance of stainless steel after the Ni/Cr/Al++B+ protective coating was deposited.
Keywords
магнетронное распыление,
ионная имплантация,
вакуумно-дуговое осаждение,
покрытие,
нержавеющая сталь,
микроструктура,
микротвердость,
коррозионная стойкость,
magnetron sputtering,
ion implantation,
vacuum arc deposition,
coating,
stainless steel,
microstructure,
microhardness,
corrosion resistanceAuthors
Dorofeeva T.I. | Institute of Strength Physics and Materials Science of SB RAS | dorofeeva@ispms.tsc.ru |
Gubaidulina T.A. | Institute of Strength Physics and Materials Science of SB RAS | goub2002@mail.ru |
Sergeev V.P. | Institute of Strength Physics and Materials Science of SB RAS | vs@ispms.tsc.ru |
Kalashnikov M.P. | Institute of Strength Physics and Materials Science of SB RAS | kmp1980@mail.ru |
Voronov A.V. | Institute of Strength Physics and Materials Science of SB RAS | avor@sibmail.com |
Всего: 5
References
Felipe Samuel Goettemsa and Jane Zoppas Ferreira // Mater. Res. - 2017. - V. 20(5). - P. 1300-1308.
Izadi M., Shahrabi T., and Ramezanzadeh B. // Appl. Surf. Sci. - 2018. - V. 440. - P. 491-505.
Behrouz Bahadormanesh and Mohammad Ghorbani // Appl. Surf. Sci. - 2018. - V. 442. - P. 313- 321.
Mrad M., Amor Y. Ben, Dhouibi L., and Montemor M.F. // Surf. Coatings Technol. - 2018. - V. 337. - P. 1-11.
Dorofeeva M.S., Dorofeeva T.I., Gritsenko B.P., and Sergeev V.P. // IOP Conf. Ser.: J. Phys. - 2018. - V. 1115. - P. 032067 (1-5).
Parfenov E.V., Yerokhin A., Nevyantseva R.R., et al. // Surf. Coatings Technol. - 2015. - V. 269. - P. 2-22.
Wei R., Vajo J.J., Matossian J.N., et al. // Surf. Coatings Technol. - 1996. - V. 83. - P. 235-242.
Pedraza F., Grosseau-Poussard J.L., and Dinhut J.F. // Thin Solid Films. - 2004. - V. 467. - P. 140-145.
Fenker M., Balzer M., and Kappl H. // Thin Solid Films. - 2006. - V. 515. - P. 27-32.
Purandare Y.P., Stack M.M., and Hovsepian P.Eh. // Surf. Coatings Technol. - 2006. - V. 201. - P. 361-370.
Barnali Biswas, Yashodhan Purandare, Arunprabhu A. Sugumaran, et al. // Thin Solid Films. - 2017. - V. 636. - P. 558-566.
Alemon B. et al. // Nucl. Instrum. Methods Phys. Res. Section B. - 2014. - V. 331. - P. 134-139.
Matei A.A., Pencea I., Branzei M., et al. // Appl. Surf. Sci. - 2015. - V. 358. - P. 572-578.
Wang H.W., Stack M.M., Lyon S.B., et al. // Surf. Coatings Technol. - 2000. - V. 126(2-3). - P. 279-287.
Jarmo Leppäniemi et al. // Thin Solid Films. - 2017. - V. 627. - P. 59-68.
Lin Chen and Shu-Lin Bai. // Appl. Surf. Sci. - 2018. - V. 437. - P. 1-12.
Cova P., Poulin S., Grenier O., and Masut R.A. // J. Appl. Phys. - 2005. - V. 97. - P. 073518 (1- 10).
Sitek R., Bolek T., and Mizera J. // Appl. Surf. Sci. - 2018. - V. 437.- P. 19-27.
Vassallo Espedito, Pedroni Matteo, Spampinato Valentina, et al. // J. Vacuum Sci. Technol. B. - 2018. - V. 36. - P. 01A105.
Mitra Akhtari Zavareh, Ahmed Aly Diaa, Mohammed Sarhan, et al. // Ceramics International. - 2018. - V. 44(6). - P. 5967-5975.
Sihui Wang, Yancai Zhang, Yong Sun, et al. // J. Alloys Compounds. - 2016. - V. 685. - P. 828- 835.
Lampa Conny and Smirnov Ivan // J. Laser Appl. - 2019. - V. 31. - P.022511.
Sakti A.R., Riandadari, D., Zakiyya H., and Prapanca A. // IOP Conf. Ser.: Mater. Sci. Eng. - 2019. - V. 494. - P. 012057-1-012057-8.
Tri Widodo Besar Riyadi and Masyrukan // AIP Conf. Proc. - 2017. - V. 1831. - P. 020034-1- 020034-6.
Bräuer G., Szyszka B., Vergohl M., and Bandorf R. // Vacuum. - 2010. - V. 84. - P. 1354- 1359.
Musil J. // RSC Advances. - 2015. - V. 5. - P.60482-60495.
Musil J. // Surf. Coatings Technol. - 2012. - V. 207. - P. 50-65.
Sidelev D.V., Kashkarov E.B., Syrtanov M.S., and Krivobokov V.P. // Surf. Coatings Technol. - 2019. - V. 369. - P. 69-78.
Morks M.F. and Berndt C.C. // Appl. Surf. Sci. - 2010. - V. 256. - P. 4322-4327.
Petley V., Sathishkumar S., Thulasi Raman K.H., et al. // Mater. Res. Bulletin. - 2015. - V. 66. - P. 59-64.
Nakaa M., Shibayanagia T., Maedaa M., et al. // Vacuum. - 2006. - V. 80. - P. 1316-1320.
Ravi Shanker Rajamure, Hitesh D. Vora, S.G. Srinivasan, and Narendra B. Dahotre. // Appl. Surf. Sci. - 2015. - V. 328. - P. 205-214.
Carroll M.P., Stephenson K., and Findley K.O. // J. Nucl. Mater. - 2009. - V. 389. - P. 248-253.
Dang Ngoc Chan C., Huvier C., and Dinhut J.F. // Intermetallics. - 2001. - V. 9. - P. 817-826.
Montealegre M.A., Gonzalez-Carrasco J.L., Morris-Munoz M.A., et al. // Intermetallics. - 2000. - V. 8. - P. 439-446.
Palombarini G. and Carbucicchio M. // Hyperfine Interactions. - 2002. - V. 139/140. - P. 267-287.
Sergeev O.V., Kalashnikov M.P., Fedorishcheva M.V., et al. // AIP Conf. Proc. - 2016. - V. 1783. - P. 020203 (1-4).
Касаткин А.Г. Основные процессы и аппараты химической технологии. - 10-е изд., стереотип., доработ., перепеч. с изд. 1973 г. - М.: ООО ТИД «Альянс», 2004. - 753 с.
Сергеев В.П., Федорищева М.В., Сергеев О.В. и др. // Изв. вузов. Физика. - 2012. - Т. 55. - № 6/2. - С. 139-146.