The Pauli exclusion principle and the problems of its theoretical substantiation | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/9

The Pauli exclusion principle and the problems of its theoretical substantiation

The modern state of the Pauli Exclusion Principle (PEP) is discussed. PEP can be considered from two viewpoints. On the one hand, it asserts that particles with half-integer spin (fermions) are described by antisymmetric wave functions, and particles with integer spin (bosons) are described by symmetric wave functions. This is the so-called spin-statistics connection (SSC). As we will discuss, the physical reasons why SSC exists are still unknown. On the other hand, according to PEP, the permutation symmetry of the total wave functions can be only of two types: symmetric or antisymmetric, both belong to one-dimensional representations of the permutation group, all other types of permutation symmetry are forbidden; whereas the solution of the Schrödinger equation may have any permutation symmetry. It is demonstrated that the proof in some textbooks on quantum mechanics that only symmetric and antisymmetric states can exist is wrong. However, the scenarios, in which an arbitrary permutation symmetry (degenerate permutation states) is permitted, lead to contradictions with the concepts of particle identity and their independence. Thus, the existence in our nature particles only in nondegenerate permutation states (symmetric and antisymmetric) is not accidental and so-called symmetrization postulate should not be considered as a postulate, since all other symmetry options for the total wave function may not be realized. From this an important conclusion follows: we may not expect that in future some unknown elementary particles can be discovered that are not fermions or bosons.

Download file
Counter downloads: 79

Keywords

принцип Паули, спин-статистика, принцип неразличимости, перестановочная симметрия, бозонные и фермионные частицы, Pauli exclusion principle, spin-statistics connection, indistinguishability principle, permutation symmetry, boson and fermion particles

Authors

NameOrganizationE-mail
Kaplan I.G.National Autonomous University of Mexicokaplan@unam.mx
Всего: 1

References

Heisenberg W. // Z. Phys. - 1925. - V. 33. - P. 879.
Born M. and Jordan P. // Z. Phys. - 1925. - V. 34. - P. 858.
de Broglie L. // Ann. Phys. - 1925. - V. 3. - P. 22.
Schrödinger E. // Ann. Phys. - 1926. - V. 79. - P. 361.
Schrödinger E. // Phys. Rev. - 1926. - V. 28. - P. 1049.
Pauli W. // Z. Phys. - 1925. - V. 31. - P. 373.
Pauli W. // Z. Phys. - 1925. - V. 31. - P. 765.
Pauli W. // Nobel Lectures, Physics, 1942-1962. - Amsterdam: Elsevier, 1964.
Kaplan I.G. The Pauli Exclusion Principle: Origin, Verifications and Applications. - Chichester: Wiley, 2017.
Heisenberg W. // Z. Phys. - 1926. - V. 38. - P. 411.
Dirac P.A.M. // Proc. R. Soc. London. A. - 1926. - V. 112. - P. 621.
Slater J.C. // Phys. Rev. - 1929. - V. 34. - P. 1293.
Fowler R.H. // Mon. Not. R. Astron. Soc. - 1926. - V. 87. - P. 114.
Dirac P.A.M. // Proc. R. Soc. London. Part II, A. - 1928. - V. 118. - P. 351.
Schrödinger E. // Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. - 1930. - V. 24. - P. 418.
Barut A.O. and Bracken A. J. // Phys. Rev. D. - 1981. - V. 23. - P. 2454; V. 24. - P. 3333.
Barut A.O. and Zanghi N. // Phys. Rev. Lett. - 1984. - V. 52. - P. 2009.
Huang K. // Am. J. Phys. - 1952. - V. 20. - P. 479.
Moor S.M. and Ramirez J.A. // Lett. Nuovo Cim. - 1982. - V. 3. - P. 87.
Cavalleri J. // Lett. Nuovo Cim. - 1985. - V. 43. - P. 285.
Hestenes D. // Found. Phys. - 2010. - V. 40. - P. 1.
Chadwick J. // Nature. - 1932. - V. 129. - P. 312.
Heisenberg W. // Z. Phys. - 1932. - V. 77. - P. 1.
Wigner E. // Phys. Rev. - 1937. - V. 51. - P. 106.
Ehrenfest P. and Oppenheimer J.R. // Phys. Rev. - 1931. - V. 37. -P. 333.
Born M. and Oppenheimer J.R. // Ann. Phys. (Leipzig). - 1927. - V. 84. - P. 457.
Dieke H.G. and Babcock H.D. // Proc. Natl. Acad. Sci. U.S.A. - 1927. - V. 13. - P. 670.
Pauli W. // Phys. Rev. - 1940. - V. 58. - P.716.
Green H.S. // Phys. Rev. - 1953. - V. 90. - P. 270.
Volkov D.V. // Sov. Phys. JETF. - 1959. - V. 9. - P. 1107.
Greenberg O.W. and Messiah A.M. // Phys. Rev. - 1965. - V. 138. - P. 1155.
Ohnuki Y. and Kamefuchi S. Quantum Field Theory and Parastatistics. - Berlin: Springer, 1982.
Kaplan I.G. // Theor. Math. Phys. - 1976. - V. 27. - P. 254.
Avdyugin A.N., Zavorotnev Yu.D, and Ovander L.N. // Sov. Phys. Solid State. - 1983. - V. 25. - P. 1437.
Nguyen B.A. // J. Phys. C: Solid State Phys. - 1988. - V. 21. - P. 1209.
Pushkarov D.I. // Phys. Status Solidi. b. - 1986. - V. 133. - P. 525.
Kaplan I.G. and Navarro O. // J. Phys.: Cond. Matter. - 1999. - V. 11. - P. 6187.
Nguyen A. and Hoang N.C. // J. Phys.: Cond. Matter. - 1990. - V. 2. - P. 4127.
Kaplan I.G. and Navarro O. // Physica C. - 2000. - V. 341-348. - P. 217.
Dyson F. // Phys. Rev. - 1956. - V. 102. - P. 1217.
Pauli W. // Prog. Theor. Phys. - 1950. - V. 5. - P. 526.
Feynman R.P. // Phys. Rev. - 1949. - V. 76. - P. 749.
Schwinger J. // Phys. Rev. - 1948. - V. 74. - V. 1939.
Duck I. and Sudarshan E.C.G. // Pauli and the Spin-Statistics Theorem. - Singapore: World Scientific, 1997.
Duck I. and Sudarshan E.C.G. // Am. J. Phys. - 1998. - V. 66. - P. 284.
Wightman A.S. // Am. J. Phys. - 1999. - V. 67. - P. 742.
Feynman R.P., Leighton R.B., and Sands M. // The Feynman Lectures on Physics. V. III. - Addison-Wesley, Reading, 1965. - P. 3.
Jabs A. // Found. Phys. - 2910. - V. 40. - P. 776.
Bennett A.F. // Found. Phys. - 2015. - V. 45. - P. 370.
De Martini F. and Santamato E. // Int. J. Quantum Inf. - 2014. - V. 12. - P. 1560004.
Santamato E. and De Martini F. // Found. Phys. - 2015. - V. 45. - P. 858.
Santamato E. and De Martini F. // Found. Phys. - 2017. - V. 47. - P. 1609.
Dirac P.A.M. // The Principles of Quantum Mechanics. - Oxford: Clarendon Press, 1958.
Schiff L.I. // Quantum Mechanics. - N.Y.: Mc Graw-Hill, 1955.
Messiah A.M. // Quantum Mechanics. - Amsterdam: North-Holland, 1962.
Messiah A.M. and Greenberg O.W. // Phys. Rev. - 1964. - V. 136. - P. 248.
Pauli W. // Science. - 1946. - V. 103. - P. 213.
Girardeau M.D. // Phys. Rev. - 1965. - V. 139. - P. 500.
Corson E.M. Perturbation Methods in Quantum Mechanics of Electron Systems. - Glasgow: University Press, 1951.
Landau L.D. and Lifschitz E.M. Quantum Mechanics (Nonrelativistic Theory). - 3rd edn. - Oxford: Pergamon Press, 1977.
Blokhintzev D.I. Principles of Quantum Mechanics. - Boston, MA: Allyn and Bacon, 1964.
Kaplan I.G. // Sov. Phys. Uspekhi. - 1976. - V. 18. - P. 988.
Kaplan I.G. // Int. J. Quant. Chem. - 2002. - V. 89. - P. 268.
Kaplan I.G. // Found. Phys. - 2013. - V. 43. - P. 1233.
Canright G.S. and Girvin S.M. // Science. - 1990. - V. 247. - P. 1197.
Piela L. // Ideas of Quantum Chemistry. - 2nd edn. - Amsterdam: Elsevier, 2014.
Girardeau M.D. // J. Math. Phys. - 1969. - V. 10. - P. 1302.
Kaplan I.G. // Group Theoretical Methods in Physics / ed. V.I. Man’ko. V. 1. - Moscow: Nauka, 1980. - P. 175.
Kaplan I.G. // Int. J. Quant. Chem. - 2007. - V. 107. - P. 2595.
Kaplan I.G. // Mol. Phys. - 2018. - V. 116. - P. 658.
Schweber S.S. An Introduction to Relativistic Quantum Field Theory. - N.Y.: Row Peterson, 1961.
Kaplan I.G. and Rodimova O.B. // Int. J. Quantum Chem. - 1973. - V. 7. - P. 1203.
Kaplan I.G. Symmetry of Many-Electron Systems. - N.Y.: Acad. Press, 1975.
Leinaas J.M. and Myrheim J. // Nuovo Cimento B. - 1977. - V. 37. - P. 1.
Wilczek F. // Phys. Rev. Lett. - 1982. - V. 48. - P. 1144.
Kołos W. and Rychlewski J. // J. Chem. Phys. - 1993. - V. 98. - P. 3960.
Wolniewicz L. // J. Chem. Phys. - 1995. - V. 103. - P. 1792.
Kaplan I.G. Intermolecular Interactions. Physical Picture, Computational Methods and Model Potentials. - Chichester, England: John Wiley & Sons, 2006.
 The Pauli exclusion principle and the problems of its theoretical substantiation | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/9

The Pauli exclusion principle and the problems of its theoretical substantiation | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/9