Relaxation processes and exciton-phonon coupling in nanocomposites based on semiconductor quantum dots CdSe/ZnS and porphyrin molecules | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/49

Relaxation processes and exciton-phonon coupling in nanocomposites based on semiconductor quantum dots CdSe/ZnS and porphyrin molecules

Using spectral-kinetic data obtained for nanoassemblies based on semiconductor quantum dots CdSe/ZnS and tetrapyridylporphyrin molecules in methylcyclohexane-toluene mixture 6:1, it was justified that the temperature lowering is accompanied by conformational transformation of surface ligand layer (trioctylphosphine oxide or amine) in individual quantum dots/ which accelerates in nanoassemblies. It was shown for quantum dots CdSe/ZnS, that states determining the absorption band of the first excitonic transition, on the one hand, and the photoluminescence band, on the other hand, have different nature. In the frames of existing models for exciton-phonon coupling in semiconductor nanostructures, the analysis was carried out for the temperature dependence (77-293 K) of quantum dot absorption and photoluminescence properties with taking into account conformational effects. It was argued that the formation of the absorption band for the first excitonic transition takes place with participation of CdSe core LO phonons, while photoluminescence properties reflect also an additional interaction with ZnS shell LO phonons.

Download file
Counter downloads: 93

Keywords

полупроводниковые квантовые точки, порфирины, наноансамбли, температурные зависимости поглощения и фотолюминесценции, экситон-фононные взаимодействия, фазовая перестройка стабилизирующего слоя лиганда, semiconductor quantum dots, porphyrins, nanoassemblies, temperature dependence of absorption and photoluminescence spectra, exciton-phonon coupling, phase transition of stabilizing ligand layer

Authors

NameOrganizationE-mail
Zenkevich E.I.National Technical University of Belaruszenkev@tut.by
Von Borczyskowski C.Chemnitz University of Technologyborczyskowski@physik.tu-chemnitz.de
Zahn D.R.T.Chemnitz University of Technologyzahn@physik.tu-chemnitz.de
Всего: 3

References

Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications / ed. by K. Pal. - Jenny Stanford Publishing, 2019. - 412 p.
Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics / eds. E. Zenkevich and C. von Borczyskowski. - Jenny Stanford Publishing, 2016. - 408 р.
Gaponenko S.V. and Demir H.V. Applied Nanophotonics. - Cambridge: Cambridge University Press, 2018.
Knowles K.E., Frederick M.T., Tice D.B., et al. // Phys. Chem. Lett. - 2012. - V. 3. - P. 18-26.
Kalyuzhny G. and Murray R.W. // J. Phys. Chem. C. - 2005. - V. 109. - P. 7012-7021.
Klimov V.I. // Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. - N.Y.: Marcel Dekker, 2003. - Chapter 5. - P. 159-214.
Sagar D.M., Cooney R.R., Sewall S.L., et al. // Phys. Rev. B. - 2008. - V. 77. - P. 235321.
Liptay T.J., Marshall L.F., Rao P.S., et al. // Phys. Rev. B. - 2007. - V. 76. - P. 155314.
Kelley A.M. // ACS Nano. - 2011. - V. 5. - P. 5254-5261.
Dzhagan V., Valakh M., Melnik N., et al. // Int. J. Spectr. - 2012. Doi.org/10.1155/2012/532385.
Dzhagan V.M., Valakh M.Y., Milekhin A.G., et al. // J. Phys. Chem. - 2013. - V. 117. - P. 18225-18233.
Anni M., Manna L., Cigolani R., et al. // Appl. Phys. Lett. - 2004. - V. 85. - P. 4169-4171.
Morello G., De Giorgi M., Kudera S., et al. // Phys. Chem. C. - 2007. - V. 111. - P. 5846-5849.
Bagaev E.A., Zhuravlev K.S., and Sveshnikova L.L. // Fizika i Technika Poluprovodnikov. - 2006. - V. 40. - P. 1218-1223.
De Mello Donega C., Bode M., and Meijerink A. // Phys. Rev. B. - 2006. - V. 74. - P. 085320.
Zenkevich E.I., Stupak A., Kowerko D., and von Borczyskowski C. // Chem. Phys. - 2012. - V. 406. - P. 21-29.
Zenkevich E.I., Stupak A., Goehler C., et al. // ACS Nano. - 2015. - V. 9. - P. 2886-2907.
Blaudeck T., Zenkevich E.I., Cichos F., and von Borczyskowski C. // J. Phys. Chem. C. - 2008. - V. 112. - P. 20251-20257.
Klimov V.I. // Annu. Rev. Phys. Chem. - 2007. - V. 58. - P. 635-673.
Wuister S.F., de Mello Donega C., Bode M., and Meijerink A. // J. Am. Chem. Soc. - 2004. - V. 126. - P. 10397-10402.
Joshi A., Narsingi K.Y., Manasreh M.O., et al. // Appl. Phys. Lett. - 2006. - V. 89. - P. 131907.
Varshni Y.P. // Physica. - 1967. - V. 34. - P. 149-154.
Cody G.D. // Hydrogenated Amorphous Silicon, Semiconductors and Semimetals. - N.Y.: Academic, 1984. - V. 21. - P. 11-79.
Valerini D., Creti A., Lomascolo M., et al. // Phys. Rev. B. - 2005. - V. 71. - P. 235409.
Landolt-Bornstein. Numerical Data and Functional Relationship in Science and Technology. New Series. Group III / ed. by H. Hellwege. - Berlin: Springer Verlag, 1982. - V. 17.
Al Salman A., Tortschanoff A., Mohamed M.B., et al. // Appl. Phys. Lett. - 2007. - V. 90. - P. 093104.
Lee J., Koteles E.S., and Vassell M.O. // Phys. Rev. B. - 1986. - V. 33. - P. 5512.
Semiconductor Quantum Dots: Physics, Spectroscopy and Applications / eds. Y. Masumoto and T. Takagahara. - N.Y.: Springer, 2002.
Cerullo G., De Silvestri S., and Banin U. // Phys. Rev. B. - 1999. - V. 60. - P. 1928.
Gindele F., Hild K., Langbein W., and Woggon U. // J. Lumin. - 2000. - V. 87-89. - P. 381- 383.
Dzhagan V., Valakh M., Melnik N., et al. // Int. J. Spectros. - 2012. Doi.org/10.1155/2012/532385.
 Relaxation processes and exciton-phonon coupling in nanocomposites based on semiconductor quantum dots CdSe/ZnS and porphyrin molecules | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/49

Relaxation processes and exciton-phonon coupling in nanocomposites based on semiconductor quantum dots CdSe/ZnS and porphyrin molecules | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/49