Combined quantum-classic simulation of photo-induced electronic density redistribution from biopolymer segments to photochrome probes | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/86

Combined quantum-classic simulation of photo-induced electronic density redistribution from biopolymer segments to photochrome probes

Fluorescence quenching of human serum albumin through transferring the energy of photo-induced electronic excitation from the single tryptophan residue in the structure to a nearby nitro-spiropyran donor was investigated by hybrid computer simulation, which includes classical molecular dynamics and semi-empirical photo-physical calculations to generate statistical spectra of tryptophan emission and nitro-spiropyran absorption. The probability of the electronic excitation redistribution between the donor and the acceptor with the subsequent photochromic transformation of nitrospiropyran to the merocyanine form, which is easily recognized due to a significant shift of the long-wavelength absorption band and can be considered as a luminescent detector of ongoing photoprocesses, has been estimated. The mechanisms of energy transfer between nonequilibrium fragments in typical combinations of their complex are considered in detail. The general scheme and technical details of modeling optical spectra are illustrated using a simple system of the anthracene molecule in an argon environment. The several other advanced hybrid approaches of classical methods in combinations with quantum-mechanical calculations of different theoretical levels, which are used in modern computational molecular spectroscopy, were discussed either.

Download file
Counter downloads: 98

Keywords

гибридное КМ-ММ-моделирование, биологические последовательности, перенос возбужденной энергии, статистические спектры, фотофизический отклик, оптические зонды, hybrid QM-MM modeling, biological sequences, excited energy transfer, statistical spectra, photo-physical response, optical probes

Authors

NameOrganizationE-mail
Pomogaev V.A.National Research Tomsk State University; Kyugpook National Universityhelperv@gmail.com
Klyuev P.N.Saint Petersburg State Universityphillveber@gmail.com
Ramazanov R. R.Saint Petersburg State Universityr.ramazanov@spbu.ru
Kononov A.I.Saint Petersburg State Universitya.kononov@spbu.ru
Всего: 4

References

Morzan U.N. et al. // Chem. Rev. - 2018. - V. 118. - P. 4071-4113.
Acharya A. et al. // Chem. Rev. - 2017. - V. 117. - P. 758-795.
Bloino J., Baiardi A., and Biczysko M. // Int. J. Quantum Chem. - 2016. - V. 116. - P. 1543-1574.
Brunk E. and Rothlisberger U. // Chem. Rev. - 2015. - V. 115. - P. 6217-6263.
Liu M. et al. // Isr. J. Chem. - 2014. - V. 54. - 1250-1263.
Van der Kamp M.W. and Mulholland A.J. // Biochemistry. - 2013. - V. 52. - P. 2708-2728.
Senn H.M. and Thiel W. // Angew. Chem. Int. Ed. - 2009. - V. 48. - P. 1198-1229.
Warshel A. and Levitt M. // J. Mol. Biology. - 1976. - V. 103. - P. 227-249.
Campomanes P. et al. // J. Am. Chem. Soc. - 2014. - V. 136. - P. 3842-3851.
Pomogaev V.A. et al. // JPPA: Chemistry. - 2018. - V. 254. - P. 86-100.
Callis P.R. // Mol. Simulation. - 2015. - V. 41. - P. 190-204.
Biesso A. et al. // J. Am. Chem. Soc. - 2014. - V. 136. - P. 2739-2747.
Помогаев В.А., Артюхов В.Я. // Изв. вузов. Физика. - 2016. - Т. 59. - № 4. - С. 54-64.
Pomogaev V., Pomogaeva A., and Aoki Y.// J. Phys. Chem. A. - 2009. - V. 113. - P. 1429-1433.
Loco D. et al. // J. Phys. Chem. Lett. - 2018. - V. 9. - P. 2404-2410.
Cupellini L. et al. // J. Phys. Chem. Lett. - 2018. - V. 9. - P. 6892-6899.
Xie P. et al. // Spectr. Acta Part A: Molecular and Biomolecular Spectr. - 2017. - V. 174. - P. 25-31.
Zanetti-Polzi L. et al. // Chem. Phys. Lett. - 2017. - V. 669. - P. 119-124.
Nogueira J.J., Plasser F., and González L.// Chem. Sci. - 2017. - V. 8. - P. 5682-5691.
Provorse M.R. et al. // J. Phys. Chem. B. - 2016. - V. 120. - P. 12148-12159.
Franco L.R. et al. // J. Chem. Phys. - 2016. - V. 145. - P. 194301.
Chen F. et al. // J. Phys. Chem. B. - 2016. - V. 120. - P. 9833-9842.
Zuehlsdorff T.J. et al. // Chem. Theory Comput. - 2016. - V. 12. - P. 1853-1861.
Armengol P. et al. // Phys. Chem. Chem. Phys. - 2016. - V. 18. - P. 16964-16976.
Chandrasekaran S. et al. // J. Phys. Chem. B. - 2015. - V. 119. - P. 9995-10004.
Altavilla S.F. et al. // Front. Chem. - 2015. - V. 3. - P. 29.
Sun G.-X. et al. // Phys. Chem. Chem. Phys. - 2015. - V. 17. - P. 24438-24445.
Etienne T. et al. // Comp. Theor. Chem. - 2014. - V. 1040-1041. - P. 367-372.
Morzan U.N. et al. // J. Chem. Phys. - 2014. - V. 140. - P. 164105.
Pederzoli M. et al. // Chem. Phys. Let. - 2014. - V. 597. - P. 57-62.
Rivalta I. et al. // Int. J. Quantum Chem. - 2014. - V. 114. - P. 85-93.
Briggs E.A., Besley N.A., and Robinson D.// J. Phys. Chem. A. - 2013. - V. 117. - P. 2644-2650.
Isborn C.M. et al. // J. Chem. Theory Comput. - 2012. - V. 8. - P. 5092-5106.
Filippi C. et al. // J. Chem. Theory Comput. - 2012. - V. 8. - P. 112-124.
Murugan N.A. et al. // Phys. Chem. Chem. Phys. - 2011. - V. 13. - P. 1290-1292.
Murugan N.A. et al. // J. Phys. Chem. B. - 2010. - V. 114. - P. 13349-13357.
Parac M. et al. // J. Comput. Chem. - 2010. - V. 31. - P. 90-106.
Plasser F. et al.// J. Phys. Chem. A. - 2012. - V. 116. - P. 11151-11160.
Paquet E. and Viktor H.L.// Adv. Chem. - 2018. - V. 2018. - P. 1-14.
Pomogaev V. et al. // Theor. Chem. Acc. - 2011. - V. 130. - P. 609-632.
Помогаев В.А., Аврамов П.В., Качин С.В. // Журн. СФУ. Хим. - 2009. - Т. 2. - С. 315-326.
ПомогаевВ.А., Артюхов В.Я. // Оптика атмосферы и океана. - 2002. - Т. 15. - № 3. - С. 240-243.
Помогаев В.А., Аврамов П.В., Качин С.В. // Журн. СФУ. Хим. - 2009. - Т. 2. - С. 327-334.
Pomogaev V.A., Avramov P.V., and Ruud K.// J. Phys. Chem. C. - 2019. - V. 123. - P. 18215- 18221.
Pomogaev V. et al. // J. Phys. Chem. A. - 2018. - V. 122. - P. 505-515.
Помогаев В.А., Артюхов В.Я. // Оптика атмосферы и океана - 2001. - Т. 14. - № 11. - С. 1033-1037.
Помогаев В.А. // Химия высоких энергий. - 2002. - Т. 36. - № 4. - С. 285-289.
Бочарникова Е.Н., Чайковская О.Н., Артюхов В.Я., Дмитриева Н.Г. // Изв. вузов. Физика. - 2018. - T. 61. - № 11. - С. 81-88.
Петрова А.Ю., Чайковская О.Н., Плотникова И.В. // ЖТФ. - 2015. - Т. 85. - Вып. 4. - С. 114-117.
Tchaikovskaya O.N., Kraukhina V.S., Artyushin V.R., and Petrova A.Yu. // Luminesence. - V. 34. - Iss. 6. - Р. 553-557.
Чайковская О.Н., Краюхина В.С., Помогаев В.А., Чайдонов А.И. // Изв. вузов. Физика. - 2018. - Т. 61. - № 10. - С. 9-14.
 Combined quantum-classic simulation of photo-induced electronic density redistribution from biopolymer segments to photochrome probes | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/86

Combined quantum-classic simulation of photo-induced electronic density redistribution from biopolymer segments to photochrome probes | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/86