Electronic spectra and photolysis of bisphenol a in water | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/102

Electronic spectra and photolysis of bisphenol a in water

A quantum chemical study of the spectral and luminescent properties of bisphenol A (BPA) and a BPA+2H2O complex was carried out. The calculations were performed by the semi-empirical method of partial neglect of differential overlap using a complex of programs and special parameterization. The spectral behavior of BPA in water was modeled by a complex with 1: 2 water molecules forming a hydrogen bond. The calculated data were compared with the results of the study of the isolated BPA molecule. The nonplanar structure of the BPA leads to a strong “mixing” of the π- and σ-type atomic wave functions. The main reason for the low quantum yield of BPA fluorescence is the efficient process of singlet-triplet conversion in the channel S 1(ππ*) ~> Tn (πσ*) in the BPA molecule and complex with water. A study of the photolysis of an isolated BPA molecule under the influence of solar radiation, the short-wavelength boundary of which at the earth’s surface is in the region of ~ 290 nm (~ 34480 cm-1), showed that the energy of the photo-dissociative state localized on the O-H bond is much higher than this value for BPA. The binding curve is characteristic of the S 1(ππ*) state, while the singlet and triplet states of the πσ*-type, localized on single C-C bonds of the central fragment of the molecule, are repulsion curves with a barrier. The low efficiency of the degradation of BPA under the influence of solar radiation, from our point of view, is associated with the presence of a significant potential barrier to the occurrence of photolysis in singlet or triplet states. The mechanisms of bond cleavage in the BPA+2H2O complex in the singlet and triplet states are different, namely, in the S 3(πσ*) state, the break occurs according to the predissociation mechanism, and in Tn (πσ*) due to its population through the singlet-triplet conversion during the S 1(ππ*) → Тn (πσ*) channel.

Download file
Counter downloads: 84

Keywords

бисфенол А, фотофизические процессы, квантово-химический расчет, полуэмпирические методы, фотолиз, bisphenol A, photophysical processes, quantum chemical calculation, semi-empirical method, photolysis

Authors

NameOrganizationE-mail
Bazyl O.K.National Research Tomsk State Universityolga.k.bazyl@gmail.com
Bocharnikova E.N.National Research Tomsk State Universitybocharnikova.2010@mail.ru
Tchaikovskaya O.N.National Research Tomsk State Universitytchon@phys.tsu.ru
Всего: 3

References

Dualde P., Pardo O., Corpas-Burgos F., et al. // Sci. Total Environment. - 2019. - V. 668. - P. 797-805.
Kolsek K., Mavri J., and Sollner Dolenk M. // Toxicology in Vitro. - 2012. - V. 26. - P. 102-106.
Mezcua M., Ferrer J., Hernando M.D., and Fenandez-Alba A.R. // Food Additives and Contaminants.- November 2006. - V. 23. - No. 11. - P. 1242-1251.
Артюхов В.Я., Галеева А.И. // Изв. вузов. Физика. - 1986. - Т. 29. - № 11. - С. 96-100.
Майер Г.В., Плотников В.П., Артюхов В.Я. // Изв. вузов. Физика. - 2016. - Т. 59. - № 4. - С. 42-53.
www. сambrindgesoft. com.
Mulliken R.S. // J. Chеm. Phys. - 1955. - V. 23. - No. 10. - P. 1833-1840.
Герцберг Г. Электронная структура и строение многоатомных соединений. - М.: Мир, 1969. - 772 с.
Svetlichnyi V.A., Chaikovskaya O.N., Bazyl O.K., et al. // High Energy Chem. - 2001. - V. 35. - No. 4. - P. 258-264.
Wang H., Zhao Y.P., Zhu Y.J., and Shen J.Y. // Vacuum. - 2016. - V. 128. - P. 198-204.
Bocharnikova E.N., Tchaikovskaya O.N., Bazyl O.K., et al. // Adv. Quantum Chem. - 2020. - V. 12. - P. 1-27.
Fujiwara Y., Taga Y., Tomonari T., et al. // Bull. Chem. Soc. Jpn. - 2001. - V. 74. - No. 2. - P. 237-244.
Scroco E. and Tomasi J. // Adv. Quantum Chem. - 1978. - V. 11. - P.115-193.
Artyukhov V.Ya. // J. Structural. Chem. - 1978. - V. 19. - No. 3. - P. 364-368.
Соколов Э.М., Шейнкман Л.Э., Дергунов Д.В. // Вода: химия и экология. - 2012. - № 4. - С. 26-32.
Китайгородский А.И., Зоркий П.М., Бельский В.К. Строение органического вещества (данные структурных исследований 1929-1970 гг.). - М.: Наука, 1980. - 413 с.
Эггинс Б.К. Химическая структура и реакционная способность твердых веществ. - М.: Мир, 1976. - 160 с.
Беллами Л. Инфракрасные спектры сложных молекул. - М.: ИЛ, 1957. - 506 с.
 Electronic spectra and photolysis of bisphenol a in water | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/102

Electronic spectra and photolysis of bisphenol a in water | Izvestiya vuzov. Fizika. 2020. № 8. DOI: 10.17223/00213411/63/8/102