Zinc oxide nanoparticles' obtained by laser ablation photocatalytic activity in the decomposition reaction of rhodamine B
The development of synthesis methods and the study of the properties of new photocatalysts is of great interest for the purposes of ecology and renewable energetics. Zinc oxide is one of the promising materials for photocatalysis. In this work, ZnO nanopowders were obtained by pulsed laser ablation (Nd: YAG laser, 1064 nm, 7 ns) in water and air, followed by heat treatment. The structure and composition of the obtained powders were studied using transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry. The nature of defective states of nanoparticles was studied using fluorescence spectroscopy. The photocatalytic activity of the material was tested in the process of photodegradation of rhodamine B upon excitation by broadband visible and UV-visible radiation. The influence of the composition and morphology of zinc oxide and the nature of defective states on the photocatalytic activity were discussed.
Keywords
оксид цинка,
импульсная лазерная абляция,
наночастицы,
спектрально-люминесцентные свойства,
дефекты,
фотокатализ,
родамин Б,
zinc oxide,
pulsed laser ablation,
nanoparticles,
spectral-luminescent properties,
defects,
photocatalysis,
rhodamine BAuthors
Gavrilenko E.A. | National Research Tomsk State University | gavrilenko2470@gmail.com |
Goncharova D.A. | National Research Tomsk State University | dg_va@list.ru |
Lapin I.N. | National Research Tomsk State University | 201kiop@mail.ru |
Gerasimova M.A. | Siberian Federal University | marina_2506@mail.ru |
Svetlichnyi V.A. | National Research Tomsk State University | v_svetlichnyi@bk.ru |
Всего: 5
References
Ibhadon A.O. and Fitzpatrick P. // Catalysts. - 2013. - V. 3. - No. 1. - P. 189-218.
Lee K.M., Lai C.W., Ngai K.S., and Juan J.C. // Water Research. - 2016. - V. 88. - P. 428-448.
Ajmal A., Majeed, I., Malik, R.N., et al. // RSC Adv. - 2014. - V. 4. - No. 70. - P. 37003-37026.
Fakhrutdinova E.D., Shabalina A.V., Gerasimova M.A., et al. // Materials. - 2020. - V. 13. - No. 9. - P. 2054.
Özgür Ü., Alivov Ya.I., Liu C., et al. // J. Appl. Phys. - 2005. - V. 98. - P. 041301.
Sakthivel S., Neppolian B., Shankar M.V., et al. // Sol. Energy Mater. Sol. Cells. - 2003. - V. 77. - P. 65 - 82.
Kumaresan N., Ramamurthi K., Babu R.R., et al. // Appl. Surf. Sci. - 2017. - V. 418. - P. 138-146.
Song H., Zhu K., Liu Y., and Zhai X. // Russ. J. Phys. Chem. A. - 2017. - V. 91. - No. 1. - P. 59-62.
Wang J., Chen R., Xia Y., et al. // Ceram. Int. - 2017. - V. 43. - P. 1870-1879
Zaka A.K., Majid W.H., and Wang H.Z. // Ultrason. Sonochem. - 2013. - V. 20. - P. 395-400.
Abarna B., Preethi T., Karunanithi A., and Rajarajeswari G.R. // Mater. Sci. Semicond. Process. - 2016. - V. 56. - P. 243- 50.
Zeng H., Du X.-W., Singh S.C., et al. // Adv. Funct. Mater. - 2012. - V. 22. - P. 1333-1353.
Reichenberger S., Marzun G., Muhler M., and Barcikowski S. // ChemCatChem. - 2019. - V. 11. - P. 1-31.
Liang C., Shimizu Y., and Masuda M. // Chem. Mater. - 2004. - V. 16. - P. 963-965.
Светличный В.А., Лапин И.Н. // Известия ВУЗов. Физика. - 2013. - Т. 56. - № 5. - С. 86-91.
Gondal M.A., Drmosh Q.A., and Yamani Z.H. // Appl. Surf. Sci. - 2009. - V. 256. - P. 298-304.
Goto T., Honda M., Kulinich S.A., et al. // Jpn. J. Appl. Phys. 2015. - V. 54 - P. 070305.
Svetlichnyi V.A., Shabalina A.V., Lapin I.N., et al. // Appl. Surf. Sci. - 2019. - V. 467-468. - P. 402-410.
Nikov R.G., Dikovska A.O., Nedyalkov N.N., et al. // Appl. Phys. A. - 2017. - V. 123. - P. 657.
Gavrilenko E.A., Goncharova D.A., Lapin I.N., et al. // Materials. - 2019. - V. 12. - No. 1. - P. 186.
Panda D. and Tseng T.Y. // J. Mater. Sci. - 2013. - V. 48. - P. 6849-6877.
Honda M., Goto T., and Owashi T. // Phys. Chem. Chem. Phys. - 2016. - V. 18. - P. 23628-23637.
Hsieh T.H., Chen J.Y., Huang C.W., and Wu W.W. // Chem. Mater. - 2016. - V. 28. - No. 12. - P. 4507-4511.
Li Z., Shen X., Feng X., et al. // Thermochim. Acta. - 2005. - V. 438. - P. 102-106.
Wang J., Chen R., Xiang L., and Komarneni S. // Ceram. Int. - 2018. - V. 44. - P. 7357-7377.
Zhang X., Qin J., Xue Y., et al. // Sci. Rep. - 2014. - V. 4. - P. 4596.
Song L., Wang Y., and Ma J. // Appl. Surf. Sci. - 2018. - V. 442. - P. 101-105.
Surender K. and Sahare P.D. // Nano. - 2012. - V. 7. - No. 3. - P. 1250022.
Jangir L.K., Kumari Y., Kumar A., et al. // Mater. Chem. Front. - 2017. - V. 1. - P. 1413-1421.
Chakraborty S., Dhara S., Ravindran T.R., et al. // AIP Advances. - 2011. - V. 1. - P. 032135.
McCluskey M.D. and Jokela S.J. // J. Appl. Phys. - 2009. - V. 106. - P. 071101.
Eixenberger J.E., Anders C.B., Wada K., et al. // ACS Appl. Mater. Interfaces. - 2019. - V. 11. - P. 24933-24944.
Tu Т., Tuan N.T., Dung N.V., et al. // J. Lumin. - 2014. - V. 156. - P. 199-204.
Brahma S. and Shivashankar A. // Mater. Lett. - 2016. - V. 164. - P. 235-238.
Liu Z., Jing X., Wang L., and Li Y. // J. Electrochem. Soc. - 2006. - V. 153. - No. 12. - P. 1035-1038.
Babu K.S., Reddy A.R., Sujatha C., et al. // Mater. Lett. - 2013. - V. 110. - P. 10-12.
Čížek J., Valenta J., Hruška P., et al. // Appl. Phys. Lett. - 2015. - V. 106. - P. 251902.
Wang M., Zhou Y., Zhang Y., et al. // Appl. Phys. Lett. - 2012. - V. 100. - P. 101906.
Mingcai Y., Li Z., Kou J., and Zou Z. // Environ. Sci. Technol. - 2009. - V. 43. - P. 8361-8366.
Hu X., Mohamood T., Ma W., et al. // J. Phys. Chem. B. - 2006. - V. 110. - P. 26012-26018.