Features of the processes of deformation of single-crystal titanium nickelide under the action of a comprehensive compression pulse
Using the example of single-crystal titanium nickelide, the importance of taking into account the volume compressibility anisotropy when calculating the processes of elastoplastic deformation in materials with cubic symmetry of elastic properties is shown. It is shown that the process of uniform volumetric deformation corresponds to the process of non-uniform stress state for materials with cubic symmetry of properties for some orientations of the calculated coordinate system relative to the directions of the main crystallographic axes. The index surface of volume compressibility (or the reciprocal of it - the compression modulus) has a non-spherical shape and is a function of Euler angles. This is shown for the first time by solving a model problem - determining the stress and strain states of a spherical body made of single-crystal titanium nickelide under the action of a comprehensive compression pulse. In the general case of orienting the calculated coordinate system relative to the directions of the main crystallographic axes, an initially spherical body of single-crystal titanium nickelide is deformed into a biaxial ellipsoid under the influence of a comprehensive compression pulse.
Keywords
никелид титана,
упругие постоянные,
монокристалл,
динамическое воздействие,
titanium nickelide,
elastic constants,
single crystal,
dynamic actionAuthors
Krivosheina M.N. | Institute of Strength Physics and Materials Science of SB RAS | marina_nkr@mail.ru |
Tuch E.V. | Institute of Strength Physics and Materials Science of SB RAS | elenatuch@yandex.ru |
Всего: 2
References
Gaillac R., Pullumbi P., and Coudert F.X. // J. Phys. Cond. Matter. - 2016. - V. 28. - P. 275201.
Муслов С.А., Кузнецов А.В., Хачин В.Н. и др. // Изв. вузов. Физика. - 1987. - T. 30. - № 8. - С. 104-105.
Materials Project. Open Web Base. TiNi // https://www.materialsproject.org/materials/mp-571/.
Wang X.F. et al. // Phys. Rev. B. - 2012. - V. 85. - P. 134108.
Муслов С.А., Лотков А.И., Арутюнов С.Д. // Изв. вузов. Физика. - 2019. - Т. 62. - № 8. - С. 102-111.
Muslov S.A. and Lotkov A.I. // AIP Conf. Proc. - 2018. - V. 2051. - P. 020207.
Lotkov A.I., Lapshin V.P., Goncharova V.A., et al. // J. Phys. - 1995. - IV. - C8-729- C8-734.
Vignjevic R., Djordjevic N., and Panov V. // Int. J. Plast. - 2012. - V. 38. - P. 47-85.
Krivosheina M.N., Kobenko S.V., Tuch E.V., et al. // Mater. Sci. Technol. - 2018. - V. 35. - No. 7. - P. 1-8.
Туч Е.В., Стребкова Е.А. // Изв. вузов. Физика. - 2019. - T. 62. - № 4. - C. 131-134.
Baughman R.H., Shacklette J.M., Zakhidov A.A., and Stafström S. // Nature (London). - 1998. - V. 392 - P. 362-365.
Toshihiro M. et al. // Jpn. Soc. Mech. Eng. A. - 2010. - V. 76. - No. 763. - P. 290-295.
Lethbridge Z.A.D. et al. // Acta Mater. - 2010. - V. 58. - P. 6444-6451.
Епишин А.И., Лисовенко Д.С. // ЖТФ. - 2016. - T. 86. - Вып. 10. - С. 74-82.
Wojciechowski K.W. // Comp. Meth. Sci. Technol. - 2005. - V. 11. - No. 1. - P. 73-79.
Ballato A. // IEEE. - 1996. - V. 43. - V. 1. - P. 56-62.
Lia S., Hassaninb H., Attallaha M.M., et al. // Acta Mater. - 2016. - V. 105. - P. 75-83.
SC-EMA: Self-Consistent Elasticity of Multi-phase Aggregates // http://scema.mpie.de.
Gaillac R. and Coudert F.-X. // http://progs.coudert.name/elate/mp?query=mp-571.
ELATE: Elastic tensor analysis. - Электронный ресурс. URL: http://progs.coudert.name/elate.
Dušan Lago Bc. Effective Tool for Material Elasticity Computation: Master’s Thesis. - Brno: Spring, 2017. - 51 p.