Relaxation mode of macroscopic plastic deformation in metals
The relaxation of elastic energy during macroscopic plastic deformation in a strict formulation is determined by the solutions of the system of nonlinear equations of mechanics of a deformable solid. Using the methods of the theory of nonlinear systems, a nonlinear parabolic equation is obtained for the amplitude of an unstable mode, which describes plastic deformation at large spatial and temporal scales.
Download file
Counter downloads: 94
Keywords
пластичность, упругая энергия, релаксация, релаксационная мода, бегущий фронт, plasticity, elastic energy, relaxation, relaxation mode, traveling frontAuthors
Name | Organization | |
Khon Yu.A. | Institute of Strength Physics and Materials Science of SB RAS | khon@ispms.tsc.ru |
Zuev L.B. | Institute of Strength Physics and Materials Science of SB RAS | lbz@ispms.tsc.ru |
References
Kuhlmann-Wilsdorf D. // Dislocations in Solids. - Amsterdam: Elsevier, 2002. - P. 213-238.
Zuev L.B. // Phys. Wave Phenom. - 2012. - V. 20. - No. 3. - P. 166-173.
Зуев Л.Б., Баранникова С.А. // ЖТФ. - 2020. - Т. 90. - Вып. 5. - С. 773-781.
Малыгин Г.А. // УФН. - 1999. - Т. 169. - Вып. 9. - С. 979-1010.
Емельянова Е.С., Романова В.А., Балохонов Р.Р. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 9. - С. 3-14.
Cross M.C., Hohenberg P.C. // Rev. Mod. Phys. - 1993. - V. 65. - P. 854-1112.
Aranson I.S. // Rev. Mod. Phys. - 2002. - V. 74. - P. 99-43.
Hohenberg P.C. and Krekhov A.P. // Phys. Rep. - 2015. - V. 572. - P. 1-42L.