On the method of eigenvalues determination of the “truncated” matrix with morse hamiltonian as an example | Izvestiya vuzov. Fizika. 2020. № 9. DOI: 10.17223/00213411/63/9/172

On the method of eigenvalues determination of the “truncated” matrix with morse hamiltonian as an example

A method of precise eigenvalues determination is developed on the basis of high order perturbation theory and applied to di-atomic molecule, as an example. The proposed method makes it possible not only to obtain energy values, but also to estimate a prediction accuracy and limits of its applicability for a specific implemented model. Numerical calculations are performed with the use of the extended Morse oscillator functions. The sixth power of the Morse coordinate is included into the potential function expansion. Analysis of possibility to make calculation in the model of the "truncated" matrix of the Hamiltonian is performed. The comparative possibilities of the method are analyzed with respect to other approaches of the potential functions determination for polyatomic molecules.

Download file
Counter downloads: 93

Keywords

внутримолекулярная потенциальная функция, осциллятор Морзе, собственные значения гамильтониана молекулы, intramolecular potential function, Morse oscillator, eigenvalues of the molecular Hamiltonian

Authors

NameOrganizationE-mail
Bekhtereva E.S.National Research Tomsk Polytechnic Universitybextereva@tpu.ru
Gromova O.V.National Research Tomsk Polytechnic Universityolgerda@tpu.ru
Glushkov P.A.National Research Tomsk Polytechnic Universitypag14@tpu.ru
Belova A.S.National Research Tomsk Polytechnic Universitybelova.sibir@mail.ru
Всего: 4

References

Martin J.M.L., Lee T.J., Taylor P.R., and Francois J.P. // J. Chem. Phys. - 1995. - V. 103. - P. 2589-2602.
Martin J.M.L., Lee T.J., and Taylor P.R. // Chem. Phys. Lett. - 1993. - V. 205. - P. 535-542.
Martin J.M.L., Lee T.J., and Taylor P.R. // J. Chem. Phys. - 1992. - V. 97. - P. 8361-8371.
Koos R., Gronovski M., and Botschwina P. // J. Chem. Phys. - 2008. - V. 128. - P. 154305.
Xinchuan H., Schwenke W.D., and Lee T.J. //J. Quant. Spectrosc. Radiat. Transf. - 2019. - V. 230. - P. 222-246.
Xinchuan H., Schwenke W.D., and Lee T.J. // J. Quant. Spectrosc. Radiat. Transf. - 2019. - V. 225. - P. 327-336.
Nielsen H.H. // Rev. Mod. Phys. - 1951. - V. 23. - P. 90-136.
Amat G., Nielsen H.H., and Tarrago G., Rotation-vibration of Polyatomic Molecules. - N.Y.: M. Dekker, Inc., 1971.
Papousek D. and Aliev M.R. Molecular Vibrational-Rotational Spectra. - Amsterdam: Elsevier, 1982.
Jorgensen F. // Mol. Phys. - 1975. - V. 29. - P. 1137-1164.
Jorgensen F., Pedersen T., and Chedin A. // Mol. Phys. - 1975. - V. 30. - P. 1377-1395.
Cheglokov A.E., Ulenikov O.N., Zhilyakov A.S., et al. // J. Phys. B. - 1989. - V. 22. - P. 997-1015.
Мессиа А. Квантовая механика. Т. 1, 2 / под ред. Л.Д. Фаддеева. - М.: Наука, 1978.
Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: учеб. пособие для вузов: в 10 т. Т. III. Квантовая механика (нерелятивистская теория). - 4-е изд., испр. - М.: Наука, 1989. - 768 с.
Давыдов А.С. Квантовая механика. - 2-е изд., испр. - М.: Наука, 1973.
Morse P.M. // Phys. Rev. - 1929. - V. 34. - P. 57-58.
Efremov Yu.S. // Opt. Speсtrosс. - 1978. - V. 44 - P. 198-201.
Bordoni A. and Manini N. // Quant. Chem. - 2007. - V. 107. - P. 782-797.
Spirko P., Jensen P., Bunker P.R., and Cejchan A. // J. Mol. Spectrosc. - 1985. - V. 112. - P. 183-202.
Niay P., Bernage P., and Guelachvili G. Catalogue des spectres de vibration-rotetion des molecules HX, DX dans leur etat foundamental electronique: etude a haute resolution (X = F, Cl, Br, I) // Congres de Tours. - France, 1979.
 On the method of eigenvalues determination of the “truncated” matrix with morse hamiltonian as an example | Izvestiya vuzov. Fizika. 2020. № 9. DOI: 10.17223/00213411/63/9/172

On the method of eigenvalues determination of the “truncated” matrix with morse hamiltonian as an example | Izvestiya vuzov. Fizika. 2020. № 9. DOI: 10.17223/00213411/63/9/172