High-intensity, low-ion energy, convergent beam propagation through low-density background plasma | Izvestiya vuzov. Fizika. 2020. № 10. DOI: 10.17223/00213411/63/10/54

High-intensity, low-ion energy, convergent beam propagation through low-density background plasma

High-intensity implantation of low-energy ions into various materials demonstrates the possibility of formation of extended, ion-doped, layers with the thicknesses reaching dozens and even hundreds of microns. The deep penetration of the dopant is achieved primarily due to radiation enhanced diffusion after the interaction of high current ion beams at the irradiation fluences up to 1020-1022 ion/cm2, where the diffusion coefficient may exceed the classical one derived from Arrhenius theory by several orders of magnitude. However, the generation of the low ion energy (mean energy of several keV) but relatively high current (~ 1 A) beams with current density up to several hundreds of mA/cm2 and their effective transportation is a nontrivial task. This paper is devoted to the studies of the formation of convergent high-intensity pulsed ion beams at acceleration voltages up to 2 kV, pulse durations up to 800 μs and duty factors reaching 0.8, their propagation through a preliminary injected low-density background plasma as well as the dynamic of space charge neutralization and the efficiency of the beam focusing.

Download file
Counter downloads: 88

Keywords

Authors

NameOrganizationE-mail
Ryabchikov A.I.National Research Tomsk Polytechnic Universityralex@tpu.ru
Shevelev A.E.National Research Tomsk Polytechnic Universityshevelevae@tpu.ru
Sivin D.O.National Research Tomsk Polytechnic Universitysivin@tpu.ru
Dektyarev S.V.National Research Tomsk Polytechnic Universitydektyarev@tpu.ru
Korneva O.S.National Research Tomsk Polytechnic Universityoskar@tpu.ru
Всего: 5

References

Chekanov S.V. et al. // JINST. - 2018. - V. 13. - P. P05022.
Aschenauer E.C. et al. // Rep. Prog. Phys. - 2019. - V. 82. - P.024301.
Kovalenko A.D. et al. // J. Phys.: Conf. Ser. - 2016. - V. 678. - P. 012023.
Kim T.-S. et al. // Fusion Eng. Des. - 2019. - V. 136B. - P. 1365.
Lifschitz A.F. et al. // Nucl. Fusion. - 2014. - V. 54. - P. 043020.
Kumar R. and Kumar V. // Opt. Mat. - 2019. - V. 88. - P. 320.
Dellasega D. // Appl. Surf. Sci. - 2013.- V. 266. - P. 161.
Langford R.M., Wang T.-X., and Ozkayac D. // Microelectr. Eng. - 2007. - V. 84 (5-8). - P. 784.
Kumar N. // Mat. Chem. Phys. - 2016. - V. 183. - P. 165.
Techarang J. // Nucl. Instrum. Methods Phys. Res. B. - 2019. - V. 459. - P. 43.
Stephan Mändl et al. // Surf. Coat. Technol. - 2019. - V. 365. - P. 83-93.
Rogov R.M. // Vacuum. - 2019. - V. 166. - P. 84.
Chen T. et al. // Nucl. Instrum. Methods Phys. Res. B. - 2019. - V. 451. - P. 10.
Surface Modification and Alloying by Laser, Ion, and Electron Beams / eds. by J.M. Poate, G. Foti, and D.C. Jacobson. - Berlin: Springer, 2013.
Ion Implantation and Beam Processing / eds. by J.S. Williams and J.M. Poate. - Orlando: Academic, 1984.
Brown I.G. // Rev. Sci. Instrum. - 1994. - V. 65. - P. 3061.
Бугаев С.П., Окс Е.М., Щанин П.М., Юшков Г.Ю. // Изв. вузов. Физика. - 1994. - Т. 37. - № 3. - С. 53-65.
Ryabchikov A.I. et al. // Rev. Sci. Instrum. - 1998. - V. 69. - P. 810.
Nikolaev A.G. et al. // Rev. Sci. Instrum. - 2012. - V. 83 (2). - P. 02A501 (1-3).
Conrad J.R. et al. // J. Appl. Phys. - 1987. - V. 62. - P. 4591.
Arzubov N.M., Isaev G.P., and Ryabchikov A.I. // Prib. Tekh. Exp. - 1988. - V. 5. - P. 28 (Russia).
Anders A. // Surf. Coat. Technol. - 1997. - V. 93 (2-3). - P. 158.
Adler R.J. and Picraux S.T. // Nucl. Instrum. Methods Phys. Res. B. - 1985. - V. 6. - P. 123-128.
Anders A. // J. Vac. Sci. Tech. B. - 1994. - V. 12. - P. 815.
Torregrosa F. // 22nd Int. Conf. on Ion Implantation Technology (IIT). - 2018.
Wei R. // Surf. Coat. Technol. - 1996. - V. 83. - P. 218.
Ueda M. // Nucl. Instrum. Methods Phys. Res. B. - 2005. - V. 240 (1-2). - P. 199.
Gavrilov N.V. and Men’shakov A.I. // Tech. Phys. - 2012. - V. 57. - P. 399.
Ryabchikov A.I. et al. // Vacuum. - 2017. - V. 143. - P. 447.
Ryabchikov A.I. et al. // J. Appl. Phys. - 2018. - V. 123 (23). - P. 233301.
Ryabchikov A.I. et al. // Surf. Coat. Technol. - 2018. - V. 355. - P. 123.
Ryabchikov A.I. et al. // Surf. Coat. Technol. - 2018. - V. 355. - P. 129.
Ryabchikov A.I. et al. // Appl. Surf. Sci. - 2018. - V. 439. - P. 106.
Handbook of plasma immersion implantation and deposition / ed. by A. Anders. - N.Y.: John Wiley & Sons, 2000.
Vacuum Arcs: Theory and Applications / ed. by J.M. Lafferty. - N.Y.: John Wiley & Sons, 1980.
Jüttner B. // J. Phys. D: Appl. Phys. - 2001. - V. 34 R. - P. 103.
Charged Particle Beams / ed. by S. Humphries, Jr. - N.Y.: John Wiley & Sons, 1990.
Lieberman M. // J. Appl. Phys. - 1989. - V. 66 (7). - P. 2926.
Stepanov I.B. et al. // Rev. Sci. Instrum. - 2014. - V. 85(2). - P. 4852219.
Koval T.V. et al. // J. Phys.: Conf. Ser. - 2018. - P. 142762.
Berdanier W. // Phys. Plasmas. - 2015. - V. 22. - P. 013104.
Kaganovich I.D. et al. // Phys. Plasmas. - 2001. - V. 8. - P. 4180.
Yushkov G.Yu. et al. // J. Appl. Phys. - 2000. - V. 88. - P. 5618.
Spädtke P. // Rev. Sci. Instrum. - 2014. - V. 85. - P. 02A744.
Irby V.D. // Phys. Rev. A. - 1989. - V. 39. - P. 54.
Kaganovich I.D. et al. // New J. Phys. - 2006. - V. 8. - P. 278.
Anders A. // J. Appl. Phys. - 1997. - V. 82. - P. 3679.
 High-intensity, low-ion energy, convergent beam propagation through low-density background plasma | Izvestiya vuzov. Fizika. 2020. № 10. DOI: 10.17223/00213411/63/10/54

High-intensity, low-ion energy, convergent beam propagation through low-density background plasma | Izvestiya vuzov. Fizika. 2020. № 10. DOI: 10.17223/00213411/63/10/54