Influence of porosity on the fracture toughness coefficient Kc of hydroxyapatite - multi-wall carbon nanotubes biocomposite materials | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/44

Influence of porosity on the fracture toughness coefficient Kc of hydroxyapatite - multi-wall carbon nanotubes biocomposite materials

The influence of the porosity on the values of the fracture toughness coefficient Kc of hydroxyapatite - multi-walled carbon nanotube biocomposite materials (HA-MWCNTs) has been analyzed. It has been found that on the resulting values of the coefficient Kc two competing factors are affected. On the one hand, the additives of multiwalled carbon nanotubes (MWCNTs) mechanically stronger than the surrounding hydroxyapatite (HA) matrix leads to increase the Kc due to the possible change the direction of the crack propagation from planar geometry and leads to a decrease of the force of the crack propagation. On the other hand, the increase of the content of MWCNT additives leads to a decrease of the porosity of the composite. Numerical computer simulation of crack formation in HA with various porosities was performed. It was shown that a decrease of porosity, that appear due to the activation of the sintering process as a result of intercalation of MWCNT additives to the HA, leads to a decrease of the crack resistance coefficient Kc of the ceramic. It has been shown that MWCNT additives in the content of less than 0.5 mass. % do not lead to a significant increase of the fracture toughness coefficient Kc due to competition between these two mechanisms.

Download file
Counter downloads: 21

Keywords

fracture toughness, multi-walled carbon nanotubes, composite, hydroxyapatite, porosity

Authors

NameOrganizationE-mail
Ponomarev A.N.Institute of Strength Physics and Materials Science of SB RASalex@ispms.tsc.ru
Barabashko M.S.B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukrainemsbarabashko@gmail.com
Rezvanova A.E.Institute of Strength Physics and Materials Science of SB RASnastya.rezvanova@mail.ru
Evtushenko E.P.Institute of Strength Physics and Materials Science of SB RASadmin@ispms.tsc.ru
Всего: 4

References

Evtushenko E.P. // AIP Conf. Proc. - 2019. - P. 020092-1-020092-5.
Balokhonov R.R., Romanova V.A., Schmauder S., et al. // TAFM. - 2019. - V. 101. - P. 342-355.
Smolin I.Yu., Eremin M.O., Makarov P.V., et al. // AIP Conf. Proc. - 2014. - V. 1623. - P. 595- 598.
Колесников Ю.В., Морозов Е.М. // Механика контактного разрушения. - М.: Наука, 1989. - С. 224.
Niihara K., Morena R., and Hasselman D.P.H. // J. Mater. Sci. Lett. - 1982. - V. 1. - P. 13-16.
Mazov I.N., Ilinykh I.A., Kuznetsov V.L., et al, // J. All. Comp. - 2014. - V. 586. - P. 440-442.
Barabashko M.S., Tkachenko M.V., Neiman A.A., et al. // Appl. Nanosci. - 2020. - V. 10. -P. 2601. DOI: 10.1007/s13204-019-01019-z.
Жигачев А.О., Головин Ю.И., Умрихин А.В. и др. // Керамические материалы на основе диоксида циркония / под общ. ред. Ю.И. Головина. - М.: ТЕХНОСФЕРА, 2018.
Sumarokov V.V., Jeżowski A., et al. // Low Temp. Phys. - 2019. - V. 45. - P. 347.
Elumeeva K.V., Kuznetsov V.L., Ischenko A.V., et al. // AIP Adv. - 2013. - V. 3. - P. 112101.
Bagatskii M.I., Barabashko M.S., et al. // Low Temp. Phys. - 2012. - V. 38. - P. 523.
Sadat-Shojai M., Khorasani M.-T., Dinpanah-Khoshdargi E., et al. // Act. Biomater. - 2013. - V. 9. - P. 7591-7621.
Balani K., Anderson R., Laha T., et al. // Biomaterials. - 2007. - V. 28. - P. 618-624.
Lahiri D., Singh V., et al. // Carbon. - 2010. - V. 48. - P. 3103-3120.
Sarkar S.K., Youn M.H., Oh I.H., et al. // Mater. Sci. Forum. - 2007. - V. 534-536. - P. 893-896.
Siddiqui H., Pickering K., and Mucalo M. // Materials. - 2018. - V. 11. - P. 1813.
White A.A., Best S.M., and Kinloch I.A. // Int. J. Appl. Ceram. Technol. - 2007. - V. 4. - P. 1-13.
Баринов С.М., Комлев В.С. // Биокерамика на основе фосфатов кальция. - М.: Наука, 2005.
Легостаева Е.В., Шаркеев Ю.П., Эппле М., Примак О. // Изв. вузов. Физика. - 2013. - T. 56. - № 10. - C. 23-28.
Chudinova E., Surmeneva M., Timin A.S. et al. // Colloids and Surfaces B: Biointerfaces. - 2018. - V. 176. - P. 130-139.
Chernozem R.V., Surmeneva M.A., Krause B., et al. // Mater. Sci. Eng. C. - 2018. - V. 97. - P. 420-430.
Komlev V.S., Bozo I.I., Deev R.V., et al. // Biomaterials. - 2020. - P. 85-119.
Nikitina Y.O., Petrakova N.V., Ashmarin A.A., et al. // Inorg. Mater. - 2019. - V. 55. - P. 1061-1067.
Goldberg M.A., Smirnov V.V., Teterina A.Y., et al. // Polym. Sci. Ser. D. - 2018. - V. 11. - P. 419-422.
Fadeeva I.V., Grabovenko F.I., Fomin A.S., et al. // Dokl. Chem. - 2019. - V. 487. - P. 203- 206.
Prosolov K.A., Sainova A., Osite A., et al. // KnE Engineering. - 2018. - P. 216-223.
Chernozem R.V., Surmeneva M.A., Krause B., et al. // Appl. Surf. Sci. - 2017. - V. 426. - P. 25.
Prosolov K.A., Belyavskaya O.A., Muehle U., et al. // Front. Mater. - 2018. - V. 5. - P. 8.
 Influence of porosity on the fracture toughness coefficient <i>K</i><sub>c</sub> of hydroxyapatite - multi-wall carbon nanotubes biocomposite materials | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/44

Influence of porosity on the fracture toughness coefficient Kc of hydroxyapatite - multi-wall carbon nanotubes biocomposite materials | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/44