Physical principles of oblique angle deposition of calcium phosphates in RF magnetron discharge
The possibility of titanium surface functionalization by an oblique angle deposition of nanostructured bioactive calcium phosphate coatings is shown in the present work. The coatings were obtained by an RF magnetron sputtering of hydroxyapatite and antibacterial zinc-substituted hydroxyapatite-based targets. The morphology and growth features of coatings were studied in relation to the process parameters, such as the angle of substrates inclination relative to the particle flux, an RF power supplied to the target, and the distance from the target surface to the surface of the substrates. With an increase in the angle of inclination, the surface morphology of the coating’s changes significantly. It resulted inappearance of nanoscale structural elements tilted towards the source of the material flux. The arrangement of surface features is ordered in accordance with the initial surface of the substrate before sputtering. The internal structure of the coatings is represented by columnar elements inclined relative to the plane of the substrate.
Keywords
glancing angle deposition,
calcium phosphate coatings,
RF magnetron depositionAuthors
Prosolov K.A. | Institute of Strength Physics and Materials Science of SB RAS | konstprosolov@gmail.com |
Belyavskaya O.A. | Institute of Strength Physics and Materials Science of SB RAS | obel@ispms.tsc.ru |
Lastovka V.V. | Institute of Strength Physics and Materials Science of SB RAS | vladimirlastovka1948@gmail.com |
Chaikina M.V. | Institute of Solid State Chemistry and Mechanochemistry SB RAS | chaikinam@solid.nsc.ru |
Sharkeev Yu.P. | Institute of Strength Physics and Materials Science of SB RAS | sharkeev@ispms.tsc.ru |
Всего: 5
References
Oechsner H. // Appl. Phys. - 1975. - V. 8. - P. 185-198.
Амосова Л.П., Парфенов П.С., Исаев М.В. // Оптический журнал. - 2014. - Т. 81. - С. 88-95.
Хасс Г., Тун Р.Э., Сандомирский В.Б. Физика тонких пленок. - М.: Мир, 1972. - 396 с.
Сурменев Р.А., Сурменева М.А., Пичугин В.Ф. и др. // Известия ТПУ. - 2009. - Т. 315. - С. 138-141.
Starkov I.A., Nyapshaev I.A., Starkov A.S., et al. // J. Vac. Sci. Technol. A. Vacuum, Surfaces, Film. - 2017. - V. 35. - No. 6. - P. 1-5.
Шаркеев Ю.П., Глушко Ю.А., Куляшова К.С. и др. // Изв. вузов. Физика. - 2014. - Т. 57. - № 3/3. - С. 268-271.
Prosolov K.A., Belyavskaya O.A., Bolat-ool A.A., et al. // J. Phys. Conf. Ser. - 2019. - V. 1393. - P. 1-8.
Prosolov K., Belyavskaya O., Linders J., et al. // Coatings. - 2019. - V. 9. - No. 4. - P. 1-17.
Prosolov K.A., Khimich M.A., Rau J.V., et al. // Surf. Coat. Technol. - 2020. - V. 394. - P. 1- 10.
Barranco A., Borras A., Gonzalez-Elipe A.R., et al. // Prog. Mater. Sci. - 2016. - V. 76. - P. 59-153.
Lintymer J., Martin N., Chappe J.M., et al. // Wear. - 2008. - V. 264. - P. 444-449.
Jaggessar A., Shahali H., Mathew A., et al. // J. Nanobiotechnology. - 2017. - V. 15. - P. 1-20.
Anderson H., Llopis-Hernandez V., Sweeten P., et al. // Compr. Biomat. II. - 2011. - V. 4. - P. 115-126.
Зекий А.О. // Институт стоматологии. - 2017. - Т. 75. - С. 46-49.
Tikhilov R.M., Shubnyakov I.I., Denisov A.O., et al. // Traumatol. Orthop. Rus. - 2018. - V. 24. - P. 95-107.
Хлусов И.А., Хлусова М.Ю., Пичугин В.Ф. и др. // Изв. вузов. Физика. - 2013. - Т. 56. - № 10. - С. 92-97.
Хлусов И.А., Шевцова Н.М., Хлусова М.Ю. и др. // Гены и клетки. - 2011. - Т. 6. - С. 55- 64.
Shahali H., Jaggessar A., and Yarlagadda P.K.D.V. // Procedia Eng. - 2017. - V. 174. - P. 1067-1076.
Krishna Alla R., Ginjupalli K., Upadhya N., et al. // Trends Biomater. Artif. Organs. - 2011. - V. 25. - No. 3. - P. 112- 118.