Electrophysical properties and transfer function of the vestibular labyrinth
We carried out an experimental and theoretical study of the electrical conductive properties of the tissues of the vestibular labyrinth. Using the theory of dynamic systems and experimental data on measurements of the amplitudes of the electrical signal at the end of the vestibular nerve, we calculated the transfer function of the vestibular labyrinth and investigated its frequency dependence. It is shown the transfer function tends to its asymptotic value with increasing frequency. We found that the transfer function of the vestibular labyrinth for stimulating impulses emanating from the electrode located in the posterior semicircular canal is significantly less than for stimulating impulses from the electrodes located in the superior and horizontal semicircular canals.
Keywords
impedance of biological tissues,
electrical equivalent circuit,
transfer function,
vestibular implantAuthors
Demkin V.P. | National Research Tomsk State University | demkin@ido.tsu.ru |
Melnichuk S.V. | National Research Tomsk State University | osbereg@yandex.ru |
Akinina M.D. | National Research Tomsk State University | maakin1993@yandex.ru |
Demkin O.V. | National Research Tomsk State University | demkinoleg81@gmail.ru |
Всего: 4
References
Guinand N., van de Berg R., Cavuscens S., et al. // ORL. - 2015. - V. 77. - No. 4. - P. 227- 240.
Guinand N., Van de Berg R., Cavuscens S., et al. // Front. Neurol. Frontiers Media SA. - 2017. - V. 8. - P. 600.
Das D., Kamil F.H, Biswas K., et al. // RSC Advances Accepted Manuscript. - 2014. - V. 4. - P. 18178-18185.
Wang K., Zhao Y., Chen D., et al. // Scientific Data. - 2017. - V. 4. - P. 170015.
Bergstrim B. // Acta Universitatis Upsaliensis. Uppsala. - 1973. - V. 159. - 41 p.
Schier P., Handler M., Johnson C.L., et al. // Front. Neurosci. - 2018. - V. 12. - P. 1-15.
Sun T., Swindle E.J., Collins J.E., et al. // Lab Chip. - 2010. - V. 10. -No. 12. - P. 1611-1617.
Van den Burg E.L, van Hoof M., and Postma A.A. // Front. Neurol. Frontiers Media SA. - 2016. - V. 7. - P. 190.
Watanuki K. and Gottesberge A.M. // Ann. Otol. Rhinol. Laryngol. - 1971. - V. 80. - No. 3. - P. 450- 454.
Santos-Sacchi J. // Hear. Res. - 1991. - V. 52. - No. 1. - P. 89-98.
Li-dong Z., Liu Ju, Hu Yin-yan, et al. // J. Otol. Elsevier. - 2008. - V. 3. - No. 1. - P. 9-17.
Демкин В.П., Мельничук С.В., Щетинин П.П. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 11. - С. 68-75.
Seborg D.E., Edgar T.F., and Duncan A. Process Dynamics and Control. - 2nd Edition By Mellichamp. - Hoboken, NJ: Wiley, 2003. - 736 p.
Демкин В.П., Мельничук С.В., Щетинин П.П. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 12. - С. 109-112.
Momani A. and Cardullo F. // А Review of the Recent Literature on the Mathematical Modeling of the Vestibular System. AIAA Sci. Tech. Forum. Kissimmee, Florida, 8-12 January 2018. - 2018. - P. 1-35.
Демкин В.П., Щетинин П.П., Мельничук С.В. и др. // Изв. вузов. Физика. - 2017. - T. 60. - № 11. - С. 152-157.
Straka H., Zwergal A., and Kathleen E. // J. Neurol. - 2016. - V. 263. - P. S10-S23.
Physical properties, chemical composition and electrophysiologic aspects of labyrinthine fluids and their significance for cochlear and vestibular functions. A critical discussion and a table-form presentation (Appendix) // Acta Oto-Laryngologica. Suppl. - 2009. - V. 62. - No. 218. - P. 25-76.
Van de Berg R., Guinand N., Nguyen T.A.K., et al. // Front. Syst. Neurosci. - 2015. - V. 8. - P. 255.
Акулов С.А., Федотов А.А. Основы теории биотехнических систем. - М.: Физматлит, 2014. - 259 с.
Sun D.Q., Rahman M.A., Fridman G. et al. // Conf. Proc. IEEE Eng. Med. Biol. Soc. - 2011. - P. 3519-3523.
Guyot J-P., Fornos A.P., Guinand N., et al. // J. Neurol. - 2016. - V. 263. - P. S30-S35.
Kosivtsova O.V., Yavorskaya S.A., and Fateeva T.G. // Neurology, neuropsychiatry, psychosomatics. - 2018. - Vol. 10. - №. 1. - P. 96-101.
Grill E., Heuberger M., Strobl R., et al. // Front Neurol. - 2018. - V. 9. - Article 1076. - P. 1-8.