Aluminum nitride doped with transition metal group atoms as a material for spintronics | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/162

Aluminum nitride doped with transition metal group atoms as a material for spintronics

The overview of scientific literature on electric and magnetic properties of AlN doped with transition metal group atoms is presented. The review is based on literature sources published mainly in the last 10 years. The doping was carried out by different methods: during the material growth (molecular beam epitaxy, magnetron sputtering, discharge techniques) or by implantation into the material. The presented theoretical and experimental data show that AlN doped with transition metal group atoms has ferromagnetic properties at temperatures above room temperature and it is a promising material for spintronics.

Download file
Counter downloads: 23

Keywords

Curie temperature, magnetic properties, aluminum nitride

Authors

NameOrganizationE-mail
Khludkov S.S.National Research Tomsk State Universityknludkov@sibmail.com
Prudaev I.A.National Research Tomsk State Universityfuncelab@gmail.com
Root L.O.National Research Tomsk Polytechnic Universitytolbanowa@tpu.ru
Tolbanov O.P.National Research Tomsk State Universitytop@mail.tsu.ru
Ivonin I.V.National Research Tomsk State Universityiiv@phys.tsu.ru
Всего: 5

References

Хлудков С.С., Толбанов О.П., Вилисова М.Д., Прудаев И.А. Полупроводниковые приборы на основе арсенида галлия с глубокими примесными центрами / под ред. О.П. Толбанова. - Томск: Изд-во Том. ун-та, 2016. - 258 с.
Ko K.Y., Barber Z.H., Blamire M.G., et al. // J. Appl. Phys. - 2006. - V. 100. - P. 083905.
Liu X., Mi J., Zhang B., et al. // J. Alloys Comp. - 2018. - V. 731. - P. 1037.
Chang Y.Q., Wang D.B., Luo X.H., et al. // Appl. Phys. Lett. - 2003. - V. 83. - P. 4020.
Han D.Q., Wu Z.F., Wang Z.H., et al. // Nanotechn. - 2016. - V. 27. - P. 135603.
Yang S.L., Gao R.S., Niu P.L., et al. // Appl. Phys. A. - 2009. - V. 96. - P. 769.
Zhao C., Wan Q., Dai J. et al. // Front. Optoelectron. - 2017; https://doi.org/10.1007/s12200-017-0728-2.
Li H., Bao Q.H., Song B., et al. // Solid State Commun. - 2008. - V. 148. - P. 406.
Ren Y., Pan D., Jian J., et al. // Integr. Ferroel.: An Int. J. - 2013. - V. 146. - P. 154.
Tanaka H., Jadwisienczak W.M., Kaya S., et al. // J. Electron. Mater. - 2013. - V. 42. - P. 844.
Xiong J., Guo P., Cai Y., et al. // J. Alloys Comp. - 2014. - V. 606. - P. 55.
Zhao C., Wan Q., Dai J., et al. // Opt. Quant. Electron. - 2017. - V. 49. - P. 116.
Li H., Cai G.M., and Wang W.J. // AIP Advances. - 2016. - V. 6. - P. 065025.
Pan D., Jian J.K., Ablat A., et al. // J. Appl. Phys. - 2012. - V. 112. - P. 053911.
Regan T.J., Ohldag H., Stamm C., et al. // Phys. Rev. - 2001. - V. B 64. - P. 214422.
Ji X.H., Lau S.P., Yu S.F., et al. // Appl. Phys. Lett. - 2007. - V. 90. - P. 193118.
Mazalova V.L., Zubavichus Y.V., Chub D.S., et al. // IOP Publ. J. Phys.: Conf. Ser. - 2013. - V. 430. - P. 012112.
Gao X.D., Jiang E.Y., and Liu H.H., et al. // Appl. Surf. Sci. - 2007. - V. 253. - P. 5431.
Yang Y., Zhao Q., Zhang X.Z., et al. // Appl. Phys. Lett. - 2007. - V. 90. - P. 092118.
Wu R., Jiang N., Jian J., et al. // Integr. Ferroel.: An Int. J. - 2013. - V. 146. - P. 54.
Ham M.-H., Yoon S., Park Y., et al. // J. Crystal Growth. - 2004. - V. 271. - P. 420.
Frazier R., Thaler G., Overberg M., et al. // Appl. Phys. Lett. - 2003. - V. 83. - P. 1758.
Majid A., Sharif R., Ali A., et al. // Jpn. J. Appl. Phys. - 2009. - V.48. - P. 040202.
Majid A., Sharif R., Zhu J.J., et al. // Appl. Phys. A. - 2009. - V. 96. - P. 979.
Zhang J., Li X.Z., Xu B., et al. // Appl. Phys. Lett. - 2005. - V. 86. - P. 212504.
Zhang J., Liou S.H, and Sellmyer D.J. // J. Phys.: Condens. Matter. - 2005. - V. 17. - No. 21.
Wistrela E., Bittner A., Schneider M., et al. // J. Appl. Phys. - 2017. - V. 121. - P. 115302.
Litvinov V.I. and Dugaev V.K. // Phys. Rev. Lett. - 2001. - V. 86. - P. 5593.
Zeng F., Fan B., and Yang Y.C. // J. Vac. Sci. Technol. - 2010. - V. 28. - P. 62.
Hebard A.F., Rairigh R.P., Kelly J.G., et al. // J. Phys. D: Appl. Phys. - 2004. - V. 37. - P. 511.
Shah A., Mahmood A., Ali Z., et al. //. JMMM. - 2015. - V. 379. - P. 202.
Yang S.G., Pakhomov A.B., Hung S.T., et al. // Appl. Phys. Lett. - 2002. - V. 81. - P. 2418.
Fan B., Zeng F., Chen C., et al. // J. Appl. Phys. - 2009. - V. 106. - P. 073907.
Wu S.Y., Liu H.X., Gu L., et al. // Appl. Phys. Lett. - 2003. - V. 82. - P. 3047.
Frazier R.M., Stapleton J., Thaler G.T., et al. // J. Appl. Phys. - 2003. - V. 94. - P. 1592.
Raley J.A., Yeo Y.K., Hengehold R.L., et al. // J. Alloys Comp. - 2006. - V. 423. - P. 184.
Frazier R.M., Thaler G.T., Leifer J.Y., et al. // Appl. Phys. Lett. - 2005. - V. 86. - P. 052101.
Endo Y., Sato T., and Takita A. // IEEE Trans. Magn. - 2005. - V. 41. - P. 2718.
Liu H.X., Wu S.Y., Singh R.K., et al. // Appl. Phys. Lett. - 2004. - V. 85. - P. 4076.
Li Y., Fan W., Sun H., et al. // J. Solid State Chem. - 2010. - V. 183. - P. 2662.
Polyakov A.Y., Smirnov N.B., Govorkov A.V., et al. // Appl. Phys. Lett. - 2004. - V. 85. - P. 4067.
Dar A. and Majid A. // Eur. Phys. J. Appl. Phys. - 2015. - V. 71. - P. 10101.
Majid A., Azmat M., Rana U.A., et al. // Mater. Chem. Phys. - 2016. - V. 179. - P. 316.
Espitia M.J.R., Diaz J.H.F., and Castillo L.E. // Int. J. Phys. Sci. - 2016. - V. 11. - P. 11.
Fan S.W., Yao K.L., Huang Z.G., et al. // Chem. Phys. Lett. - 2009. - V. 482. - P. 62.
Yao G., Fan G., Xing H., et al. // JMMM. - 2013. - V. 331. - P. 117.
Medvedeva J.E., Freeman A.J., Cui X.Y., et al. // Phys. Rev. Lett. - 2005. - V. 94. - P. 146602.
López-Pérez W. and González-Hernández R. // Comput. Mater. Sci. - 2014. - V. 91. - P. 1.
Cui X. Y. Fernandez-Heviab D., Delley B., et al. // J. Appl. Phys. - 2007. - V. 101. - P. 103917.
Хлудков С.С., Прудаев И.А., Толбанов О.П. // Изв. вузов. Физика. - 2012. - T. 55. - № 8. - С. 44.
Хлудков С.С., Прудаев И.А., Толбанов О.П. // Изв. вузов. Физика. 2017. - Т. 60. - № 12. - С. 113.
Shi L.-J., Zhu L.-F., Zhao Y.-H., et al. // Phys. Rev. B. - 2008. - V. 78.- P. 195206.
Frazier R.M., Thaler G.T., Abernathy C.R., et al. // J. Appl. Phys. - 2003. - V. 94. - P. 4956.
Pearton S.J., Abernathy C.R., Overberg M.E., et al. // J. Appl. Phys. - 2003. - V. 93. - P. 1.
Zutic I., Fabian J., and Das Sarma S. // Rev. Mod. Phys. - 2004. - V. 76. - P. 323.
Kumar D., Antifakos J., Blamire M.G., et al. // Appl. Phys. Lett. - 2004. - V. 84. - P. 5004.
Захарченя Б.П., Коренев В.Л. // УФН. - 2005. - Т. 175. - Вып. 6. - С. 629.
Kucheyev S.O., Williams J.S., Zou J., et al. // J. Appl. Phys. - 2002. - V. 92. - P. 3554.
Espitia R.M.J., Murillo G.J.F., and Lopez C.O. // IOP Conf. Ser.: J. Phys.: Conf. Series. - 2017. - V. 935. - P. 012001. DOI: 10.1088/1742-6596/935/1/012001.
Wistrela I., Schmied I., Schneider M., et al. // Thin Solid Films. - 2018. - V. 648. - P. 76.
Бессолов В.Н., Гущина Е.В., Коненкова Е.В. и др. // Письма в ЖТФ. - 2018. - Т. 44. - С. 96.
Слаповский Д.Н., Павлов А.Ю., Павлов В.Ю. // ФТП. - 2017. - Т. 51. - С. 461.
Михайлович С.В., Галиев Р.Р., Зуев А.В. и др. // Письма в ЖТФ. - 2017. - Т. 43. - С. 9.
Lei W. W., Liu D., Zhu P. W., et al. // Appl. Phys. Lett. - 2009. - V. 95. - P. 162501.
Makarov Y.N., Avdeev O.V., and Barash I.S. // J. Cryst. Growth. - 2008. - V. 310. - P. 881.
 Aluminum nitride doped with transition metal group atoms as a material for spintronics | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/162

Aluminum nitride doped with transition metal group atoms as a material for spintronics | Izvestiya vuzov. Fizika. 2020. № 11. DOI: 10.17223/00213411/63/11/162