Dynamics of variation in WWR-K reactoroperationalparameters under gradual replacement of waterreflector by beryllium one
The WWR-K research reactor operates with low-enriched uranium (LEU) fuel beginning with 2016. In view of keeping high levels of the generated power in the core and the reactivity margin sufficient for the 21-day work cycle, side water reflector of neutrons gradually, as fuel burns out, is replaced by beryllium one such way that the reactor operational characteristics are not getting worse. The object of the study is the core of the WWR-K research reactor with low-enriched fuel. The aim of the work is to substantiate the procedure for the transition from a water reflector to a beryllium reflector during the operation of the reactor, which allows not only preserving, but also improving the neutron characteristics of the core, as well as analysing the changes in the main neutron-physical characteristics of the core, obtained both by calculation and experimentally during the three-year operation of the reactor. The main tool for computational studies is the computer code MCNP6. Experimental data - the operating characteristics of the WWR-K reactor generated during its operation. A cycle of computational studies was carried out with modelling the core of the WWR-K reactor in the MCNP environment and determining the dynamics of changes in the neutron flux density, reactivity, efficiency of the control and protection system working elements and kinetic parameters important for ensuring the safe operation of the reactor. The calculated dependences of the main operational characteristics of the WWR-K reactor are presented and analysed from the point of view of their use for scientific research, as well as their impact on the safety of the reactor operation.
Keywords
WWR-K research reactor,
core,
side reflector,
low-enriched uranium fuel,
fuel burnup,
neutron flux density,
generated power density,
beryllium,
kinetic parameters,
reactivity feedbacks,
nuclear safetyAuthors
Sairanbayev D.S. | The Institute of Nuclear Physics; Al-Faraby Kazakh National University | darkhan.sairanbay@gmail.com |
Koltochnik S.N. | The Institute of Nuclear Physics | svetlana.koltochnik@gmail.com |
Shaimerdenov A.A. | The Institute of Nuclear Physics; Al-Faraby Kazakh National University | aashaimerdenov@gmail.com |
Tulegenov M.Sh. | The Institute of Nuclear Physics | m.tulegenov@inp.kz |
Kenzhin Y.A. | The Institute of Nuclear Physics; Al-Faraby Kazakh National University | kenzhin@inp.kz |
Tsuchiya K. | Japan Atomic Energy Agency | tsuchiya.kunihiko@jaea.go.jp |
Всего: 6
References
Shaimerdenov A.A., Nakipov D.A., Arinkin F.M., et al. // Phys. Atom. Nucl. - 2018. - V. 81. - No. 10. - P. 1408-1411.
Merezhko D.A., Merezhko M.S., Gussev M.N., et al. // Proc. 18th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, The Minerals, Metals & Materials Series / eds. J.H. Jackson, D. Paraventi, and M. Wright. - 2019. - P. 1125-1140.
Merezhko M.S., Maksimkin O.P., Merezhko D.A., and Shaimerdenov A.A. // Phys. Met. Metallogr. - 2019. - V. 120. - No. 7. - P. 716-721.
Larionov A.S., Zhakanbayev E.A., Karpikov A.N., et al. // J. Phys.: Conf. Ser. - 2019. - V. 1393. - Iss. 1. - Art. No. 012105.
Chekushina L., Dyussambaev D., Shaimerdenov A., et al. // J. Nucl. Mater. - 2014. - V. 452. - Iss. 1-3. - P. 41-45.
Tazhibayeva I., Beckman I., Shestakov V., et al. // J. Nucl. Mater. - 2011. - V. 417. - No. 1-3. - P. 748-752.
Tazhibayeva I., Skakov M., Baklanov V., et al. // Nucl. Fusion. - 2017. - V. 57. - No. 12.
Аринкин Ф.М., Шаймерденов А.А., Гизатулин Ш.Х. и др. // Атомная энергия. - 2017. - Т. 123. - № 1. - С. 15-20.
IAEA Safeguards glossary 2001. Edition International Atomic Energy Agency. - Vienna, 2002. - 218 p.
https://www.rertr.anl.gov
Аринкин Ф.М., Гизатулин Ш.Х., Жотабаев Ж.Р. и др. // Снижение обогащения исследовательских и материаловедческих реакторов: труды междунар. конф. - Вена, 2004. - С. 5.
Аринкин Ф.М., Гизатулин Ш.Х., Колточник С.Н. и др. // Снижение обогащения исследовательских и материаловедческих реакторов: труды междунар. конф. - Пекин, 2009. - С. 30.
Аринкин Ф.М., Чакров П.В., Чекушина Л.В. и др. // Известия Томского политехнического университета. Сер. Техника и технологии в энергетике. - 2014. - Т. 325. - № 4. - С. 6-15.
Shaimerdenov A.A., Arinkin F.M., Chakrov P.V., et al. // Снижение обогащения исследовательских и материаловедческих реакторов: труды междунар. конф. - Антверп, 2016. - С. 11.
MCNP6 User’s Manual - Los Alamos National Laboratory, LA-CP-13-00634, 2013.
Chadwick M.B. et al. // Nucl. Data Sheets. - 2011. - V. 112. - P. 2887.
Zyryanova A.A., Meteleva Yu.V., Kozlov A.V., et al. // Problems Atomic Sci. Technol. Ser. Nucl. Reactor Constants. - 2018. - Iss. 1. - P. 5-16.
Naymushin A., Chertkov Y., Varlachev V., et al. // Adv. Mater. Res.- 2015. - V. 1084. - P. 289-293. https://doi.org/10.4028/www.scientific.net/amr.1084.289.
Стогов Ю.В. Основы нейтронной физики: учеб. пособие. - М.: МИФИ, 2008. - 204 с.
Sairanbayev D.S., Koltochnik S.N., Shaimerdenov А.А., et al. // NNC RK Bulletin. - March 2018. - Iss. 1(73). - P. 114-119.
Fischer G.J. // Phys. Rev. - 1 October 1957. - V. 108. - P. 99. https://doi.org/10.1103/PhysRev.108.99.
Определение бериллия в горных породах и бериллиевых рудах фотонейтронным методом. Ядерно-фиэические методы. Инструкция № 72-ЯФ / Всесоюзный научно-исследовательский институт минерального сырья (ВИМС). - М., 1968.
«Комплекс аппаратуры системы управления и защиты для исследовательского реактора ВВР-К АСУЗ-18р, РУНК.501319.075», СНИИП-Систематом. - М., 2014.
Koltochnik S.N. and Shaimerdenov A.A. // Eur. J. Phys. Funct. Mater. - 2019. - V. 3(3). - P. 204- 218.
Olson A.P. and Kalimullah M. // A Users Guide to the PLTEMP/ANL V4.2Code, Argonne National Laboratory. Argonne, Illinois, USA, May 20, 2011.
IAEA safety standards No. SSR-3. Safety of research reactors. Specific safety requirements. International Atomic Energy Agency, Vienna, 2016.
Olson A.P., Dionne B., Marin-Lafleche A., and Kalimullah M. // A Users Guide to PARET/ANL Version 7.5 r82160803, Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois, USA.