Superelasticity in quenched and aged oligocrystals of femnalniti alloy in compression
The superelasticity in the temperature range from 203 to 523 K in quenched and aged at T = 473 K for 3 hours oligocrystals of Fe42.5Mn34Al15Ni7.5Ti1 (at. %) alloy was studied. It is shown that the critical stresses for the stress-induced α-γ' martensitic transformation slightly increased when the test temperature increased in accordance to the Clausius-Clapeyron relationship. The value α = d σcr/ d T characterizing this growth in quenched and aged oligocrystals has close values of 0.46 and 0.37 MPa/K, respectively. Regardless of the structural state, superelasticity is observed in the studied temperature range from 203 to 523 K. The maximum superelasticity at room temperature is 6.0 and 6.8% in a quenched and aged oligocrystal, respectively. Rapid degradation of functional properties was detected during the loading/unloading cycle at room temperature. Thus, after the 10th isothermal cycle in quenched oligocrystals a residual strain εirr of 2.8% is observed and in aged oligocrystals εirr = 1.7%.
Keywords
iron-based FeMnAlNiTi alloy,
oligocrystal,
martensitic transformation,
superelasticity,
cyclic stabilityAuthors
Kuksgauzen I.V. | V.D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State University | irbas@sibmail.com |
Poklonov V.V. | V.D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State University | poklonov_vyacheslav@mail.ru |
Chumlyakov Y.I. | V.D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State University | chum@phys.tsu.ru |
Kuksgauzen D.A. | V.D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State University | kuksgauzen90@gmail.com |
Kirillov V.A. | V.D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State University | vladk@sibmail.com |
Всего: 5
References
Chowdhury P., Canadinc D., and Sehitoglu H. // Mater. Sci. Eng. R. - 2017. - V. 122. - P. 1-28.
Ojha A. and Sehitoglu H. // Int. J. Plast. - 2016. - V. 86. - P. 93-111.
Tseng L.W., Ma Ji, Hornbuckle B.C., et al. // Acta Mater. - 2015. - V. 97. - P. 234-244.
Poklonov V.V., Chumlyakov Y.I., Kireeva I.V., and Kirillov V.A. // Mater. Lett. - 2018. - V. 233. - P. 195-198.
Tseng L.W., Ma Ji, Vollmer M., et al. // Scripta Mater. - 2016. - V. 125. - P. 68-72.
Ozcan H., Ma Ji, Wang S.J., et al. // Scripta Mater. - 2017. - V. 134. - P. 66-70.
Vallejos J.M., Giordana M.F., Sobrero C.E., and Malarria J.A. // Scripta Mater. - 2020. - V. 179. - P. 25-29.
Vollmer M., Segel C., Krooß P., et al. // Scripta Mater. - 2015. - V. 108. - P. 23-26.
Roca P. La, Baruj A., Sobrero C.E., et al. // J. Alloys Compd. - 2017. - V. 708. - P. 422-427.
Vollmer M., Krooß P., Karaman I., and Niendorf T. // Scripta Mater. - 2017. - V. 126. - P. 20- 23.
Vollmer M., Krooß P., Kriegel M.J., et al. // Scripta Mater. - 2016. - V. 114. - P. 156-160.
Poklonov V.V., Kuksgauzen I.V., Chumlyakov Y.I., et al. // Lett. Mater. - 2020. - V. 10 (1). - P. 78-82.
Otsuka K. and Ren X. // Prog. Mater. Sci. - 2005. - V. 50. - Iss. 5. - P. 511-678.
Kireeva I.V., Picornell C., Pons J., et al. // Acta Mater. - 2014. - V. 68. - P. 127-139.
Чумляков Ю.И., Киреева И.В., Панченко Е.Ю. и др. // Изв. вузов. Физика. - 2011. - Т. 54.- № 8. - С. 96-108.
Чумляков Ю.И., Киреева И.В., Панченко Е.Ю., Тимофеева Е.Е. Механизмы термоупругих мартенситных превращений в высокопрочных монокристаллах сплавов на основе железа и никелида титана. - Томск: Изд-во НТЛ, 2016. - 244 с.
Chumlyakov Y.I., Kireeva I.V., Kutz O.A., et al. // Scripta Mater. - 2016. - V. 119. - P. 43-46.
Hornbogen E. // Acta Metall. - 1985. - V. 33. - Iss. 4. - P. 595-601.
Abuzaid W., Wu Y., Sidharth R., et al. // Shape Memory and Superelasticity. - 2019. - V. 5. - P. 263-277.
Поклонов В.В., Куксгаузен И.В., Чумляков Ю.И., Куксгаузен Д.А. // Современные материалы и технологии новых поколений: сб. науч. трудов II Междунар. молодежн. конгресса. - Томск: Изд-во Томского политехнического университета, 2019. - С. 139-141.