Modeling of dielectric relaxation in clays at negative and positive temperatures | Izvestiya vuzov. Fizika. 2021. № 1. DOI: 10.17223/00213411/64/1/58

Modeling of dielectric relaxation in clays at negative and positive temperatures

Experimental data on measuring the complex dielectric constant (CDP) of clays with full moistening with distilled water in the frequency range from 1 kHz to 8.5 GHz at temperatures from -15 to +25 °C are presented. The modeling of the dependences of is carried out by a multirelaxation model that takes into account the relaxation of free and bound water, as well as relaxation at the bound water - mineral and bound water - air boundaries. It is shown that at temperatures below -5 °C, a relaxation process appears in the CDP spectrum due to polarization at the bound water - ice or ice - mineral interface. The relationship between the parameters of this relaxation process and the petrophysical characteristics of the rock is found.

Download file
Counter downloads: 70

Keywords

complex dielectric constant, dielectric relaxation, interfase polarization, kaolin clay, bentonite clay, bound water

Authors

NameOrganizationE-mail
Repin A.V.Omsk State Pedagogical Universityrepinrew@mail.ru
Rodionova O.V.Omsk State Pedagogical Universityolga_vk07@list.ru
Kroshka E.S.Omsk State Pedagogical Universitysmallermoon@mail.ru
Всего: 3

References

Миронов В.Л., Бобров П.П., Фомин С.В., Каравайский А.Ю. // Изв. вузов. Физика. - 2013. - Т. 56. - № 3. - С. 75-79.
Revil A. // Water Resources Res. - 2013. - V. 49. - P. 306-327.
Kruschwitz S., Halisch M., Prinz C., et al. // Int. Symp. Soc. Core Analysts (SCA2017-080). Vienna, Austria, 27 Aug. - 1 Sept. 2017.
Wagner N., Bore T., Robinet J.-C., et al. // J. Geophys. Res.: Solid Earth. - 2013. - V. 118. - No. 9. - P. 4729-4744.
Bore T., Schwing M., Serna M.L., et al. // IEEE Trans. Geosci. Remote Sens. - 2018. - V. 56. - Iss. 8. - P. 4702-4713.
Chen Y. and Or D. // Water Resources Res. - 2006. - V. 42. - W06424. DOI: 10.1029/2005WR00459.
Эпов М.И., Бобров П.П., Миронов В.Л., Репин А.В. // Геология и геофизика. - 2011. - Т. 52. - № 9. - С. 1302-1309.
Lapina A.S. and Bobrov P.P. // Prog. Electromagn. Res. - 2016. - V. 45. - P. 9-16.
Бобров П.П., Красноухова В.Н., Крошка Е.С., Лапина А.С. // Изв. вузoв. Физика. - 2017. - Т. 60. - № 4. - С. 135-140.
Бобров П.П., Кондратьева О.В. // Материалы XII Междунар. конф. «Физика диэлектриков» (Диэлектрики - 2011). Санкт-Петербург, 23-26 мая 2011 г. - 2011. - Т. 1. - С. 204-206.
Bobrov P.P., Repin A.V., and Rodionova O.V. // IEEE Trans. Geosci. Remote Sens. - 2015. - V. 53. - P. 2366-2372.
Комаров С.А., Миронов В.Л. Микроволновое зондирование почв. - Новосибирск: Наука, 2000. - 259 с.
Klein L.A. and Swift C.T. // IEEE Trans. Ant. Prop. - 1977. - V. AP-25. - No. 1. - P. 104-111.
Чукин В.В. Модель диэлектрических свойств воды и льда // Свидетельство о государственной регистрации программы для ЭВМ № 2010616606.
Repin А.V., Rodionovа O.V., and Shumskayte M.Y. // Progress in Electromagnetics Research Symposium - Spring (PIERS), St. Petersburg, Russia, 22-25 May 2017. - 2017. - P. 3786-3789. DOI: 10.1109/PIERS.2017.8262417.
 Modeling of dielectric relaxation in clays at negative and positive temperatures | Izvestiya vuzov. Fizika. 2021. № 1. DOI: 10.17223/00213411/64/1/58

Modeling of dielectric relaxation in clays at negative and positive temperatures | Izvestiya vuzov. Fizika. 2021. № 1. DOI: 10.17223/00213411/64/1/58