Numerical simulation evolution of radiation spectra in the XeF(C-A) amplifier THL-100 laser system
Using numerical simulation methods it was studied the evolution of the spectral characteristics of frequency-modulated radiation with a duration of 250 ps and an energy of 2 mJ and a central wavelength of l = 475 nm in the XeF(C-A) amplifier of the THL-100 laser system. The laws of the deformation of the spectra and spectral energy density of laser radiation was investigated. When the energy of the VUV amplifier pump radiation is 270 J, the maximum spectral energy density of the output radiation reaches 0.92 and 0.91 J×nm-1 in the positive and negative chirp modes, respectively. It is shown that in the gain saturation mode, the radiation wavelength with the maximum spectral energy density increases on a positive chirp: from 475 to 477.8 nm, and on a negative chirp decreases: from 475 to 472.5 nm.
Keywords
hybrid laser system THL-100,
chirped pulse amplification,
numerical simulation,
spectral energy densityAuthors
Yastremskii A.G. | Institute of High Current Electronics SB RAS | ayastremskii@yandex.ru |
Losev V.F. | Institute of High Current Electronics SB RAS | losev@ogl.hcei.tsc.ru |
Всего: 2
References
Strickland D. and Mourou G.A. // Opt. Commun. -1985. - V. 56. - P. 219-221.
Ozaki T., Kieffer J.-C., Toth R., et al. // Laser Part. Beams. - 2006. - V. 24. - P. 101-106.
Mikheev L.D. and Losev V.F. // High Energy and Short Pulse Lasers / ed. R Viskup. - Croatia: InTech, 2016. - Chapter 6. - P. 131-161. DOI: 10.5772/63972.
Аристов А.И., Грудцын Я.В., Зубарев И.Г. и др. // Оптика атмосферы и океана. - 2009. - T. 22. - C. 1029-1034.
Alekseev S.V., Aristov A.I., Ivanov N.G., et al. // Laser Part. Beams. - 2013. - V. 31. - P. 17- 21.
Алексеев С.В., Аристов А.И., Иванов Н.Г. и др. // Квантовая электроника. - 2012. - Т. 42. - С. 377-379.
Ястремский А.Г., Иванов Н.Г., Лосев В.Ф. // Квантовая электроника. - 2018. - Т. 48. - С. 206- 2011.
Алексеев С.В., Аристов А.И., Грудцын В.Я. и др. // Квантовая электроника. - 2013. - Т. 43. - С. 190-200.
Yastremskii A.G., Ivanov N.G., and Losev V.F. // Quantum Electron. - 2016. - V. 46. - P. 982- 988.
Cohen L. Time-Frequency Analysis. - New Jersey: Prentice-Hall PTR, 1995.
Diels J.C. and Rudolph W. Ultrashort Laser Pulse Phenomena. Fundamentals, Techniques, and Applications on a Femtosecond Time Scale. - San Diego, California: Academic Press, 2006.
Eberly J.H. and Wodkiewicz K. // J. Opt. Soc. Am. - 1977. - V. 67. - P. 1252-1261.
Belabas N., Likforman J., Conioni L., et al. // Opt. Lett. - 2001. - V. 26. - P. 743-745.
Флетчер К. Вычислительные методы в динамике жидкостей: в 2 т. - М.: Мир, 1991.
Кузнецова Т.И., Михеев Л.Д. // Квантовая электроника. - 2008. - T. 38. - C. 969-976.
Bischel W.K., Eckstrom D.J., Walcker H.C. Jr., and Tilton R.A. // J. Appl. Phys. - 1981. - V. 52. - P. 4429-4434.
Fleck J.A. Jr. // Phys. Rev. B. - 1970. - V. B1. - P. 84-100.
Алексеев С.В., Иванов Н.Г., Лосев В.Ф. и др. // Оптика атмосферы и океана. - 2013. - Т. 26. - С. 863-866.
Losev V., Alekseev S., Ivanov N., et al. // Proc. SPIE. - 2011. - V. 7993. - Р. 799317.
Giambruno F., Radier C., Rey G., and Cheriaux G. // Appl. Opt. - 2011. - V. 50. - P. 2617- 2621.