Experimental study and numerical simulation of breakdown of a gap with a sharply inhomogeneous distribution of electric field | Izvestiya vuzov. Fizika. 2021. № 2. DOI: 10.17223/00213411/64/2/136

Experimental study and numerical simulation of breakdown of a gap with a sharply inhomogeneous distribution of electric field

Presents the results of experimental studies and numerical simulations using the xoopic code of breakdown of a ‘cone-to-plane’ gap filled with nitrogen at a pressure of 12.5-400 kPa at negative polarity. In the experiment, the formation of a diffuse discharge was observed in the entire indicated pressure range. At a nitrogen pressure of up to 200 kPa, a large-diameter streamer was formed in the gap. At higher pressures, two streamers of smaller diameter were formed. At low nitrogen pressure, streamer formation began at a certain distance from the cathode. Numerical simulation showed that under these conditions, electrons quickly leave the cathode region due to the high reduced electric field strength. The simulation also took into account the excitation of nitrogen molecules. From the ratio R 391/394 of the emission intensities of the bands of molecular N2+ ion and N2 molecule, the dynamics of the electron temperature T e and the reduced electric field strength E / p in plasma were determined. The velocity of the streamer was determined from the velocity of propagation of the maximum of R 391/394 along the gap. The results are compared with the results of numerical simulation.

Download file
Counter downloads: 73

Keywords

nanosecond discharge, breakdown, ionization wave, streamer

Authors

NameOrganizationE-mail
Beloplotov D.V.Institute of High Current Electronics SB RASrff.qep.bdim@gmail.com
Grishkov A.A.Institute of High Current Electronics SB RASgrishkov@to.hcei.tsc.ru
Sorokin D.A.Institute of High Current Electronics SB RASsdma-70@loi.hcei.tsc.ru
Shklyaev V.A.Institute of High Current Electronics SB RASshklyaev@to.hcei.tsc.ru
Всего: 4

References

Белоплотов Д.В., Тарасенко В.Ф., Сорокин Д.А., и др. // Письма в ЖЭТФ. - 2017. - Т. 106. - Вып. 10. - С. 627-632.
Levko D. and Krasik Y.E. // J. Appl. Phys. - 2012. - V. 112. - P. 113302.
Shklyaev V.A., Baksht E.K., Belomyttsev S. Y., et al. // J. Appl. Phys. - 2017. - V. 121. - P. 093304.
Tarasenko V.F., Baksht E.K., Beloplotov D.V., et al. // Laser Part. Beams - 2016. - V. 34. - P. 748-763.
Ulmaskulov M.R., Mesyats G.A., Sadykova A.G., et al. // Rev. Sci. Instrum. - 2017. - V. 88. - P. 045106.
Shao T., Tarasenko V.F., Yang W., et al. // Chin. Physics Lett. - 2014. - V. 31. - P. 084301.
Yatom S. and Krasik Y.E. // J. Phys. D: Appl. Phys. - 2014. - V. 47. - No. 5. - P. 215202.
Pai D.Z., Stancu G.D., Lacoste D.A., et al. // Plasma Sources Sci. Technol. - 2009. - V. 18. - P. 045030.
Lomaev M.I., Beloplotov D.V., Tarasenko V.F., et al. // IEEE Trans. Dielectr. Electr. Insul. - 2015. - V. 22. - P. 1833-1840.
Shao T., Tarasenko V.F., Zhang C., et al. // Rev. Sci. Instrum. - 2013. - V. 84. - P. 053506.
Shklyaev V.A., Baksht E.K., Belomyttsev S.Ya, et al. // J. Appl. Phys. - 2015. - V. 118. - P. 213301.
Kozyrev A., Kozhevnikov V., Lomaev., et al. // EPL. - 2016. - V. 114. - P. 45001.
Godard B. // IEEE J. Quantum Electron. - 1974. - V. 10. - P. 147-153.
Бычков Ю.И., Лосев В.Ф., Савин В.В. и др. // Квантовая электроника. - 1975. - V. 2. - P. 2047-2053.
Lomaev M.I., Rybka D.V., Sorokin D.A., et al. // Opt. Spectrosc. - 2009. - V. 107. - P. 33-40.
Белоплотов Д.В., Ломаев М.И., Сорокин Д.А., Тарасенко В.Ф. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 40-45.
Белоплотов Д.В., Сорокин Д.А., Ломаев М.И., Тарасенко В.Ф. // Изв. вузов. Физика. - 2019. - Т. 62. - № 11. - С. 5-12.
Paris P., Aints M., Valk F., et al. // J. Phys. D: Appl. Phys. - 2005. - V. 38. - P. 3894-3899.
Britun N., Gaillard M., Ricard A., et al. // J. Phys. D: Appl. Phys. - 2007. - V. 40. - P. 1022-1029.
Itikawa Y. // J. Phys. Chem. Ref. Data. - 2006. - V. 35. - P. 31-53.
Phelps A.V. and Pitchford L.C. // Phys. Rev. A. - 1985. - V. 31. - P. 2932.
Shklyaev V.A., Belomyttsev S.Ya., and Ryzhov V.V. // J. Appl. Phys. - 2012. - V. 112. - P. 113303.
Tardiveau P., Magne L., Marode E., et al. // Chin. Phys. Lett. - 2014. - V. 31. - P. 084301.
 Experimental study and numerical simulation of breakdown of a gap with a sharply inhomogeneous distribution of electric field | Izvestiya vuzov. Fizika. 2021. № 2. DOI: 10.17223/00213411/64/2/136

Experimental study and numerical simulation of breakdown of a gap with a sharply inhomogeneous distribution of electric field | Izvestiya vuzov. Fizika. 2021. № 2. DOI: 10.17223/00213411/64/2/136