Influence of a pulse axial magnetic field on a high-current arc of a vacuum circuit breaker
The effect of a relatively short external axial magnetic field on the characteristics of a vacuum arc discharge in a vacuum circuit breaker is investigated. A pulsed magnetic field was created by external coils. The shape of the magnetic field pulse is one harmonic half-cycle with a duration of 1.5, 2.8, or 4.5 ms. Magnetic field induction was regulated independently of the main discharge current. The use of a delay generator made it possible to apply the magnetic field at different moments of time relative to the main discharge current in the gap. It is assumed that the use of the pulsed magnetic field will make it possible to control the burning regime of a high-current vacuum arc, i.e. realize the reverse mode with the transition from the active anode spot to the diffuse mode of discharge burning.
Keywords
axial magnetic field,
vacuum circuit breaker,
high-current vacuum arcAuthors
Schneider A.V. | Institute of High Current Electronics SB RAS | schneider@lve.hcei.tsc.ru |
Popov S.A. | Institute of High Current Electronics SB RAS | popov@lve.hcei.tsc.ru |
Dubrovskaya E.L. | Institute of High Current Electronics SB RAS | selena@lve.hcei.tsc.ru |
Всего: 3
References
Ge G., Liao M., Duan X., et al. // IEEE Trans. Plasma Sci. - 2016. - V. 44. - P. 79-84.
Van Lanen E.P.A. The current interruption process in vacuum analysis of the currents and voltages of current-zero measurements: doct. thesis. - Delft University of Technology, 2008.
Schulman M.B. // IEEE Trans. Plasma Sci. - 1993. - V. 21. - P. 484-488.
Sugita M., Igarashi T., Kasuya H., et al. // IEEE Trans. Plasma Sci. - 2009. - V. 37. - P. 1438-1445.
Miller H.C. // Contrib. Plasma Phys. - 1989. - V. 29. - No. 3. - P. 223-249.
Zalucki Z. and Janiszewski J. // IEEE Trans. Plasma Sci. - 1999. - V. 27. - P. 991-1000.
Keidar M. and Schulman M.B. // Proc. 19th Int. Symp. on Discharges and Electrical Insulation in Vacuum (19th ISDEIV). - Xian, China, 2000. - P. 210-213.
Chaly A.M., Lobatchev A.A., Shkolnik S.M., and Zabello K.K. // Proc. 19th Int. Symp. on Discharges and Electrical Insulation in Vacuum (19th ISDEIV). - Xian, China, 2000. - P. 286-289.
Slade P.G. The Vacuum Interrupter. Theory, Design, and Application. - N.Y.: CRC Press, 2008. - Ch. 2.
Liu Z., Kong G., Ma H., et al. // IEEE Trans. Plasma Sci. - V. 42. - No.9. - 2014. - PP. 2277-2283.
Schneider A.V., Popov S.A., Batrakov A.V., et al. // IEEE Trans. Plasma Sci. - 2013. - V. 41. - No. 8. - P. 2022-2028.
Ge G., Cheng X., Liao M., et al. // Vacuum. - 2018. - No. 147. - P. 65-71.
Яковлев Е.В., Шнайдер А.В., Дубровская Е.Л., Попов С.А. // Изв. вузов. Физика. - 2018. - Т. 61. - № 6. -С. 30-33.
Popov S., Schneider A., Dubrovskaya E., and Batrakov A. // Proc. 28th Int. Symp. on Discharges and Electrical Insulation in Vacuum (28th ISDEIV). Greifswald, Germany, 2018. - P. 259-262.
Шнайдер А.В., Попов С.А., Дубровская Е.Л., Батраков А.В. // Изв. вузов. Физика. - 2019. - Т. 62. - № 5. - С. 155-160.
Шнайдер А.В., Попов С.А., Лавринович В.А., Марал Д.Д. // Изв. вузов. Физика. - 2018. - Т. 61. - № 7. - С. 126-130.